Received: 11 January 2016
Accepted: 13 June 2016
Published: 29 June 2016

Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy

Oleg G. Chepurny ${ }^{1}$, Colin A. Leech ${ }^{1}$, Martin Tomanik ${ }^{2}$, Maria C. DiPoto ${ }^{2}$, Hui Li², Xinping Han ${ }^{2, \dagger}$, Oinghe Meng ${ }^{3}$, Robert N. Cooney ${ }^{3}$, Jimmy Wu ${ }^{2}$ \& George G. Holz ${ }^{1,4}$

Abstract

Rational assembly of small molecule libraries for purposes of drug discovery requires an efficient approach in which the synthesis of bioactive compounds is enabled so that numerous structurally related compounds of a similar basic formulation can be derived. Here, we describe ($4+3$) and (3+2) indole annulation strategies that quickly generate complex indole heterocycle libraries that contain novel cyclohepta- and cyclopenta[b]indoles, respectively. Screening of one such library comprised of these indoles identifies JWU-A021 to be an especially potent stimulator of glucagon-like peptide-1 (GLP-1) secretion in vitro. Surprisingly, JWU-A021 is also a potent stimulator of Ca^{2+} influx through TRPA1 cation channels ($\mathrm{EC}_{50} \mathrm{Ca} .200 \mathrm{nM}$), thereby explaining its ability to stimulate GLP-1 release. Of additional importance, the available evidence indicates that JWU-A021 is one of the most potent nonelectrophilic TRPA-1 channel agonists yet to be reported in the literature.

The indole heterocycle is among the most important nitrogen-containing heterocycles in both medicine and the broader spectrum of biologically active compounds. Indeed, it prominently occupies a spot in the top 10 most frequently occurring nitrogen heterocycles of FDA approved drugs in the US ${ }^{1}$. The significance of indole is further underscored by the fact that it is also the side-chain of L-tryptophan, one of only 21 proteinogenic amino acids found in eukaryotes. It is perhaps not surprising then that a subset of the indole motif, cycloalka[b]indoles, has garnered considerable attention from pharmaceutical and biotechnology companies as a promising pharmacophore for new drugs. In 2012 , our group reported a novel $(4+3)$ strategy for preparing cyclohepta $[b]$ indoles in a single chemical transformation by means of a three-component annulation reaction beginning with an indole, a carbonyl, and a diene ${ }^{2}$. Because each of the starting materials can be independently varied, it was possible to quickly produce a large library of these compounds. Density functional theory (DFT) calculations suggested that the reaction proceeds through a step-wise mechanism, rather than a concerted, pericyclic $6 \pi \mathrm{e}^{-}$process. No longer constrained by the Woodward-Hoffmann selection rules that govern pericyclic transformations, we then extended the methodology to include ($3+2$) annulation reactions in which the dienes were substituted by styrenyl substrates (total $4 \pi \mathrm{e}^{-}$) to furnish cyclopenta $[b]$ indoles.

These theoretical considerations prompted us to investigate if cyclohepta[b]indole libraries could be screened to allow the identification of small molecules with biologically significant properties. To achieve proof of concept, we evaluated the capacity of cyclohepta[b]indoles to act as glucagon-like peptide-1 (GLP-1) secretagogues. GLP-1 is synthesized and secreted from intestinal L-cells, and it is the prototype of a new class of blood glucose-lowering agents that are now in use for the treatment of type 2 diabetes mellitus (T2DM) ${ }^{3}$. In this manuscript we report: 1) for the first time our findings on the $(3+2)$ methodology, 2) expanded substrate scope for the $(4+3)$ annulation, 3) the identification of one of these compounds, JWU-A021, as a potent GLP-1 secretagogue, and 4) experimental evidence indicating that JWU-A021 likely operates in the intestinal L-cells by elevating the intracellular $\left[\mathrm{Ca}^{2+}\right]$ by means of activating the Transient Receptor Potential Ankyrin 1 channel (TRPA1) ${ }^{4}$.

[^0]
Cycloalka[b]indoles

$(3+2)$ "B-Series"

(syn) JWU-B012
(27% combined yield, 1:1 dr)

Figure 1. Cyclohepta $[b]$ indole synthesis by $(4+3)$ and $(3+2)$ cycloaddition reactions. (Left panel) "A-Series" heterocyclics generated by $(4+3)$ cycloaddition reactions. ${ }^{\text {a }}$ indole (1 equiv), carbonyl (2 equiv), diene (5 equiv), GaBr_{3} ($10 \mathrm{~mol} \%$), rt. ${ }^{\mathrm{b}}$ indole (1 equiv), carbonyl (2 equiv), diene (5 equiv), $\mathrm{Ga}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%$), rt . cindole (1 equiv), carbonyl (1.1 equiv), diene (5 equiv), $\mathrm{Ga}(\mathrm{OTf})_{3}\left(20 \mathrm{~mol} \%\right.$), rt. ${ }^{\mathrm{d}}$ Single-crystal X-ray analysis. ${ }^{\mathrm{e}} 2 \mathrm{mmol}$ scale. (Right panel) "B-Series" heterocyclics generated by ($3+2$) cycloaddition reactions. ${ }^{\text {a indole (}} 1$ equiv), carbonyl (2 equiv), diene (1.5 equiv), TfOH ($20 \mathrm{~mol} \%$), rt.

Results

Identification of cyclohepta[b]indoles with GLP-1 releasing actions. Using a three-component $(4+3)$ annulation methodology developed by one of our groups (see Supplemental Material) ${ }^{2}$, we generated a library of cyclohepta[b]indoles (Fig. 1, left panel). These products were screened for their capacity to stimulate GLP-1 release from mouse STC-1 intestinal enteroendocrine cells ${ }^{5-7}$. Three cyclohepta $[b]$ indoles with GLP-1 releasing properties were identified, each of which contain either I, Br, or Cl substitutions that append an identical core structure. These "A-Series" compounds include JWU-A019, JWU-A020, and JWU-A021 (red box, Fig. 1, left panel), each of which dose-dependently stimulated GLP-1 release by ca. 2 -fold over baseline (Fig. 2a-c), with JWU-A021 being the most potent ($\mathrm{EC}_{50} 1.9 \mu \mathrm{M}$). Surprisingly, the GLP-1 secretagogue action of JWU-A021 was reduced by the selective TRPA1 cation channel blockers A967079, AP-18, and HC030031 (Fig. 2d-g). This finding indicated that JWU-A021 might be a TRPA1 cation channel activator. In fact, JWU-A021 raised the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in fura-2 loaded STC-1 cell monolayers (Fig. 3a). Furthermore, this Ca^{2+}-elevating action of JWU-A021 (EC 50 ca. 200 nM) was abrogated by the TRPA1 channel blockers A967079 and HC030031 (Fig. 3b,c). Consistent with prior reports that TRPA1 channels are expressed in STC-1 cells ${ }^{8,9}$, and that TRPA1 channel activation leads to GLP-1 secretion from this cell line ${ }^{9}$, the established TRPA1 channel activator allyl isothiocyanate (AITC) raised the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$, and this effect was abrogated by A967079 (Fig. 3d). Since an increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ triggers GLP-1 release from intestinal L-cells ${ }^{10}$, and since L-cells express TRPA1 channels ${ }^{9}$, these findings indicated that JWU-A021 might serve as the prototype of a new class of small molecule GLP-1 secretagogues with TRPA1 channel activating properties.

Structure-function properties of the A-Series of cyclohepta[b]indoles. Although JWU-A021 contains a chlorine substitution (Fig. 1, left panel), this halogenation was not essential to its biological activity since the non-halogenated indole JWU-A016 also exerted a dose-dependent stimulatory effect to raise the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ (Fig. 3e). Other compounds of the A-series designated as JWU A029 through A034 (see Fig. 1, left panel) were considerably less potent ($\mathrm{EC}_{50}>3 \mu \mathrm{M}$) in this assay (Fig. 3f) despite their structural similarity to JWU-A021. Furthermore, for JWU-A021, the dextrorotatory enantiomer (+)-($6 R, 9 S$)-JWU-A021 ${ }^{11}$ stimulated a larger increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in comparison to the levorotatory enantiomer (-)-($6 \mathrm{~S}, 9 \mathrm{R}$)-JWU-A021 ${ }^{11}$ (Fig. 4a,b), whereas racemic JWU-A021 exerted a stimulatory effect that was intermediate between that of the dextrorotatory and levorotatory enantiomers (Fig. 4c,d).

The A-Series of cyclohepta[b]indoles derived by the $(4+3)$ annulation methodology (Fig. 1, left panel) were then compared with a B-series of cyclopenta $[b]$ indoles derived by a $(3+2)$ annulation methodology (see Fig. 1, right panel). These B-series compounds (JWU B007 through B014) were obtained by modifying the annulation reaction so that the Lewis acid catalyst GaBr_{3} was replaced with $20 \mathrm{~mol} \%$ of TfOH (see Supplemental Material). When the B-series compounds were evaluated in the fura-2 assay using STC-1 cells, they were established to

Figure 2. Cyclohepta [b] indole-stimulated GLP-1 release: effects of TRPA1 channel blockers. (a-c) JWUA019, JWU-A020, and JWU-A021 stimulated GLP-1 secretion from STC-1 cells. (d) Basal GLP-1 secretion was not significantly altered by A967079. (e-g) GLP-1 secretion stimulated by JWU-A021 was reduced by A967079, AP-18, and HC030031. Data are the mean + s.d. of $N=3$ independent experiments ($* \mathrm{p}<0.05$; paired t test).
be especially weak Ca^{2+} elevating agents such that a test concentration of $10 \mu \mathrm{M}$ was necessary to detect any increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ (data not shown). In summary, these findings demonstrated that there existed a clear structural specificity for cycloalka[b]indoles as Ca^{2+}-elevating agents in STC-1 cells. The A-Series cyclohepta[b]indole JWU-A021 was bioactive at nM concentrations, whereas all B-series cyclopenta $[b]$ indoles were ineffective.

JWU-A021 activates TRPA1 channels to promote $\mathbf{C a}^{2+}$ influx. We next sought to identify the molecular target that mediates the action of JWU-A021 to stimulate an increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in STC-1 cells. Initially, we found that the Ca^{2+}-elevating action of JWU-A021 was blocked by inclusion of La^{3+} in the standard extracellular saline (SES) (Fig. 5a). This finding is significant because La^{3+} blocks Ca^{2+} entry through non-selective cation channels (NSCCs) and voltage-dependent Ca^{2+} channels (VDCCs) ${ }^{4,12}$. We also found that JWU-A021 failed to stimulate an increase of the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ when the extracellular $\left[\mathrm{Ca}^{2+}\right]$ was lowered from 2.6 mM to 100 nM (Fig. 5b). This finding is expected if JWU-A021 promotes Ca^{2+} influx rather than Ca^{2+} mobilization from intracellular Ca^{2+} stores. Since it might be argued that Ca^{2+} stores were simply depleted under conditions in which the SES contained $100 \mathrm{nM} \mathrm{Ca}^{2+}$, we compared the Ca^{2+} mobilizing properties of a purinergic receptor agonist (ATP) under conditions in which the SES contained $2.6 \mathrm{mM} \mathrm{Ca}^{2+}$ or $100 \mathrm{nM} \mathrm{Ca}^{2+}$. This control experiment revealed that ATP retained its ability to mobilize Ca^{2+} even when the extracellular Ca^{2+} was set to 100 nM (c.f., Fig. 5 c , d). Thus, a depletion of Ca^{2+} stores did not explain why JWU-A021 failed to raise the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ when the SES contained

Figure 3. Actions of JWU-A021 and other A-series compounds to increase $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$. (a) Fura-2 assays of STC-1 cell monolayers demonstrated the concentration-dependent action of JWU-A021 to increase $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$. (b,c) A967079 and HC030031 each exerted concentration-dependent actions to counteract the stimulatory effect of JWU-A021 ($1 \mu \mathrm{M}$) in STC-1 cells. (d) The TRPA1 channel activator AITC ($10 \mu \mathrm{M}$) increased $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$, and this action of AITC was also reduced by A967079 and HC030031 in STC-1 cells. For these panels and subsequent figures, JWU-A021 was administered by bolus injection (Inj.). (e,f) Ca^{2+}-elevating actions of JWU-A016 (e) and the A029-A034 series of test agents (f). For all examples depicted here, the findings are representative of a single experiment repeated a minimum of five times on five different occasions with similar results.
$100 \mathrm{nM} \mathrm{Ca}^{2+}$. Instead, the SES containing $100 \mathrm{nM} \mathrm{Ca}^{2+}$ failed to support the action of JWU-A021 to promote Ca^{2+} influx.
Ca^{2+} influx stimulated by JWU-A021 might result solely from TRPA1 channel activation since GLP- 1 secretion stimulated by JWU-A021 was reduced by TRPA1 channel blockers (Fig. 2d-g). In fact, TRPA1 channels are NSCCs that allow Ca^{2+} permeation ${ }^{4}$. However, it is important to take into account the possibility that binding of JWU-A021 to TRPA1 channels leads to membrane depolarization and action potential generation, thereby stimulating additional Ca^{2+} influx through VDCCs. Therefore, a systematic analysis was performed to evaluate potential effects of selective VDCC blockers ${ }^{12}$. Nimodipine, a blocker of L-type VDCCs, slowed the initial increase of $\left[\mathrm{Ca}^{2+}\right]_{i}$ measured in response to JWU-A021 (Fig. 5e), but the sustained increase of $\left[\mathrm{Ca}^{2+}\right]_{i}$ occurring at the assay's end-point was unaffected (Fig. 5e). As a positive control, we confirmed the ability of nimodipine to suppress the increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ that resulted from 28 mM KCl -induced membrane depolarization (Fig. 5f). Thus, L-type VDCCs played a minor role as mediators of sustained Ca^{2+} influx stimulated by JWU-A021. Since the selective TRPA1 channels blockers A967079 and HC030031 fully abolished all Ca^{2+}-elevating actions of JWU-A021

Figure 4. Differential actions of JWU-A021 enantiomers to increase $\left[\mathrm{Ca}^{2+}\right]_{i \cdot}(\mathbf{a}, \mathbf{b})$ The dextrorotatory (Dextro-) enantiomer (+)-(6R,9S)-JWU-A021 exerted a more powerful stimulatory effect in comparison to the levorotatory (Levo-) enantiomer (+)-($6 S, 9 R$)-JWU-A021 when it was tested in the fura-2 assay using monolayers of STC-1 cells. (c,d) Differential stimulation of an increase of $\left[\mathrm{Ca}^{2+}\right]_{i}$ by the dextrorotatory, levorotatory, and racemic forms of either $1 \mu \mathrm{M}$ or $0.3 \mu \mathrm{M} \mathrm{JWU}$-A 021 . For all examples depicted here, the findings are representative of a single experiment that was repeated a minimum of three times on three different occasions with similar results.
(Fig. 3b,c), the increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ measured at the end-point was instead explained by TRPA1 channel activation in response to JWU-A021.

We also tested T-type (kurtoxin, mibefradil), N-type (omega-conotoxin GVIA), and P/Q-type (omega-agatoxin IVA) blockers of VDCCs. None of these agents altered the end-point increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ measured in response to JWU-A021 (data not shown). Using whole-cell patch clamp analysis in the voltage-clamp mode, we then demonstrated that brief focal application of JWU-A021 to STC-1 cells led to the appearance of an inward current when the membrane potential was set to -60 mV (Fig. 6a). By using a ramp stimulus protocol to vary the holding potential, it was established that the current activated by JWU-A021 exhibited outward rectification (Fig. 6a, inset), as is expected for TRPA1 channels ${ }^{4}$. Using RT-PCR analysis, the expression of TRPA1 mRNA in STC-1 cells was confirmed (Fig. 6b). Finally, live-cell imaging demonstrated reversible actions of JWU-A021 to raise the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in STC-1 cells (Fig. 6c). This was also the case for HEK-293 cells transfected with a rat TRPA1 cDNA (Fig. 6d). Thus, target validation was achieved in which JWU-A021 was established to be a TRPA1 channel activator.

JWU-A021 retains its ability to activate mutant C622S TRPA1. Electrophiles such as AITC activate TRPA1 channels by covalently modifying cysteine residues located near the cytosolic N -terminus of the channel ${ }^{4,13}$. Although the structure of JWU-A021 indicates that it is unlikely to act as an electrophile, we sought experimental evidence that this is the case. Thus, the action of JWU-A021 was evaluated in HEK-293 cells transfected with a wild-type (WT) TRPA1, an empty vector (EV), or a mutant (MT) C622S TRPA1 channel that has reduced sensitivity to electrophiles ${ }^{14}$. For cells transfected with the WT TRPA 1 channel, JWU-A021 stimulated an increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$, and this effect was blocked by A967079 (Fig. 7a). However, for cells transfected with the EV, there was no effect of JWU-A021 (Fig. 7b). As a control, we verified that AITC also increased the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in cells transfected with the WT TRPA1 channel, but not the EV (Fig. 7c,d), and that this effect of AITC was inhibited by A967079 (Fig. 7c).

Further analysis revealed that the C622S TRPA1 channel was activated by JWU-A021 in a manner nearly identical to that of the WT (Fig. 7e,f). However, the C622S TRPA1 channel responded poorly to AITC (Fig. 7g,h). The reduced AITC sensitivity of the mutant channel is expected since the cysteine 622 residue that is implicated in the control of channel activity, by covalent modification with AITC, is missing in the mutant channel ${ }^{14}$. Collectively, such findings provide support for a model in which JWU-A021 acts independently of covalent cysteine modification to activate TRPA1 channels. This model is supported by our single cell imaging studies in which it was demonstrated that the Ca^{2+}-elevating action of JWU-A021 was repeatable and rapidly reversible following wash

Figure 5. JWU-A021 promotes $\mathbf{C a}^{2+}$ influx rather than $\mathbf{C a}^{2+}$ mobilization. (a) $\mathrm{The}_{\mathrm{Ca}}{ }^{2+}$ channel blocker La^{3+} exerted a concentration-dependent action to abrogate the increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ stimulated by JWU-A021 $(1 \mu \mathrm{M})$. (b) The action of JWU-A021 $(1 \mu \mathrm{M})$ to increase $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ was abrogated when the Ca^{2+} concentration of the SES was reduced to 100 nM . (c,d) ATP dose-dependently increased the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ measured under conditions in which the SES contained either $2.6 \mathrm{mM} \mathrm{CaCl}_{2}$ (c) or $100 \mathrm{nM} \mathrm{CaCl}_{2}$ (d). (e) The L-type Ca^{2+} channel blocker nimodipine $(5 \mu \mathrm{M})$ slowed the rate of onset but failed to reduce the end-point increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ measured in response to JWU-A021 $(1 \mu \mathrm{M})$. (f) The effectiveness of nimodipine $(5 \mu \mathrm{M})$ as an inhibitor of Ca^{2+} influx was demonstrated by its ability to fully block the end-point increase of $\left[\mathrm{Ca}^{2+}\right]_{i}$ measured in response to 28 mM KCl induced depolarization. For all examples depicted here, the findings are representative of a single experiment repeated a minimum of three times on three different occasions with similar results.
out of JWU-A021 (Fig. 6c,d). Thus, JWU-A021 might activate TRPA1 channels through reversible binding to a receptor that corresponds to the channel, itself.

JWU-A021 stimulates GLP-1 release from primary intestinal cell cultures. The GLP-1 secretagogue action of JWU-A021 was also tested using mouse intestine primary cell cultures enriched in L-cells. These cultures exhibited glucose-stimulated GLP-1 release (Fig. 8a), and they also released GLP-1 in response to JWU-A021 and AITC (Fig. 8b). Furthermore, the GLP-1 secretagogue actions of JWU-A021 and AITC were inhibited by the TRPA1 channel blocker HC030031 (Fig. 8b). Immunocytochemical analysis using a GLP-1 specific monoclonal antibody in combination with a horseradish peroxidase (HRP) conjugated secondary antiserum revealed that ca. 20\% of the cells comprising these cultures contained GLP-1 (Fig. 8c, top panel). However, a negative control demonstrated that GLP-1 immunoreactivity was not measurable using the secondary antiserum alone (Fig. 8c, bottom panel). Interestingly, quantitative reverse transcriptase polymerase chain reaction

Figure 6. Membrane currents and Ca^{2+} transients activated by JWU-A021. (a) Whole-cell patch clamp analysis $\left(\mathrm{V}_{\mathrm{h}}-60 \mathrm{mV}\right)$ demonstrated inward membrane currents activated by repeated 5 sec focal applications of JWU-A021 ($3 \mu \mathrm{M}$; red triangles) to a single STC-1 cell. The inset provides a current-voltage (I-V) relationship for the current activated by JWU-A021 (I_{m}, membrane current in pA normalized to membrane capacitance in pF). It is the difference current obtained by subtracting the IV relationships measured during (time point "i") and after recovery (time point "ii") of the response. Findings are representative of a single patch clamp experiment that was repeated with similar results using $N=10$ cells. (b) RT-PCR validation that STC- 1 cells express TRPA1 channel mRNA, as detected using two different primer pairs (RT, reverse transcriptase; MWM, molecular weight markers). Findings are representative of a single experiment repeated twice with similar results. (c) Averaged Ca^{2+} transients obtained from STC-1 cells stimulated by focal application (arrows) of JWU-A021 $(3 \mu \mathrm{M})$ to $N=8$ cells. (d) Ca^{2+} transients stimulated by focal application (arrows) of JWU-A021 $(3 \mu \mathrm{M})$ to a single HEK-293 cell transfected with rat TRPA1 cDNA fused to EYFP cDNA (red trace), or a HEK293 cell transfected with EYFP cDNA but not rat TRPA1 cDNA (black trace). EYFP fluorescence was used as a marker to positively identify cells that were transfected so that fura-2 based assays of $\left[\mathrm{Ca}^{2+}\right]_{i}$ could be performed using these cells. Findings are representative of a single experiment repeated a minimum of three times on three different occasions with similar results.
(qRT-PCR) analysis revealed that JWU-A021 significantly increased levels of TRPA1 channel mRNA by ca. 40% in these cultures (Fig. 8d). Furthermore, this action of JWU-A021 was inhibited by HC030031 (Fig. 8d). Thus, Ca^{2+} entry through TRPA1 channels seems to exert a positive feedback effect on TRPA 1 channel mRNA expression. Collectively, such findings are in agreement with the report of Emery and co-workers that TRPA1 channel activation by AITC leads to GLP-1 release from mouse L-cells ${ }^{9}$. In summary, the new method of cycloalka[b] indole library construction reported here has identified JWU-A021 to be a GLP-1 secretagogue with potent TRPA1 activating properties, not only in STC-1 cells, but also in mouse L-cells.

Discussion

Rational assembly of small molecule libraries for purposes of drug discovery requires an efficient approach in which the synthesis of bioactive compounds is enabled so that numerous structurally related compounds of a similar basic formulation can be derived. Here, we describe $(4+3)$ and $(3+2)$ annulation strategies that quickly generate complex indole heterocycle libraries that contain novel cyclohepta and cyclopenta $[b]$ indoles, respectively. We demonstrate that these indole heterocycle libraries are amenable to screening so that new GLP-1 secretagogues can be identified. Thus, the primary outcome of this study is that the cyclohepta[b]indole JWU-A021 is revealed to be a novel stimulator of GLP-1 release from STC-1 cells and mouse intestinal L-cells. These findings

Figure 7. Studies with HEK-293 cells transfected with recombinant TRPA1. (a,b) HEK-293 cell monolayers transfected with wild-type (WT) rat TRPA1 cDNA, but not a negative control empty vector (EV), exhibited an increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in response to JWU-A021 $(1 \mu \mathrm{M})$, and this action of JWU-A 021 was abrogated by the TRPA1 channel blocker A967079. (c,d) HEK-293 cells transfected with WT rat TRPA1 cDNA, but not a negative control EV, exhibited an increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in response to AITC $(10 \mu \mathrm{M})$, and this action of AITC was abrogated by the TRPA1 channel blocker A967079. This experiment confirmed the expected failure of HEK-293 cells to express endogenous TRPA1 channels. (e) A concentration-dependent action of JWU-A021 to increase $\left[\mathrm{Ca}^{2+}\right]_{i}$ was measured in HEK-293 cell monolayers transfected with wild-type (WT) rat TRPA1 cDNA. (f) HEK-293 cell monolayers transfected with mutant C622S rat TRPA1 cDNA responded to JWU-A021 in a manner nearly identical to that of cells transfected with WT TRPA1 (compare panels e,f). Thus, the nonelectrophile JWU-A021 acted independently of C622 covalent modification. (g,h) The TRPA1 activator AITC stimulated an increase of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in HEK-293 cell monolayers transfected with WT rat TRPA1, and this action of AITC to increase $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ was greatly diminished in HEK-293 cells transfected with mutant C622S TRPA1 cDNA (compare panels g, h). Thus, the electrophile AITC must covalently modify C622 in order to fully activate the channel. For all examples depicted here, the findings are representative of a single experiment repeated a minimum of three times on three different occasions with similar results.

Figure 8. JWU-A021 stimulates GLP-1 release from mouse intestinal cells. (a) Primary cultures were stimulated for 30 min using serum-free DMEM assay buffer containing either 5.6 or 10 mM glucose so that glucose-stimulated GLP-1 secretion could be measured. Data are the mean + s.d. of 4 independent assays ($* \mathrm{p}<0.05$; paired t test) and are expressed as the fold-stimulation of GLP- 1 release, so that a value of 1.0 corresponds to GLP-1 release measured for buffer containing 5.6 mM glucose. (b) HC030031 ($10 \mu \mathrm{M}$) inhibited the actions of JWU-A021 $(3 \mu \mathrm{M})$ and AITC $(100 \mu \mathrm{M})$ to stimulate GLP-1 secretion from primary cultures. HC030031 was administered 15 minutes prior to addition of JWU-A021 or AITC, and it was also present during the 30 minutes test interval during which cells were exposed to JWU-A021 or AITC dissolved in serum free DMEM assay buffer containing 5.6 mM glucose. Data are the mean + s.d. of $4-6$ independent assays $(* \mathrm{p}<0.05$; **p <0.01; ANOVA with Bonferroni post test). (c) Immunocytochemical detection of GLP-1 in primary cell cultures. The top panel illustrates specific GLP-1 immunoreactivity (brown), as detected using the anti-GLP-1 monoclonal primary antibody in combination with an HRP conjugated secondary antiserum. The bottom panel illustrates negative control non-specific labeling obtained when using the secondary antiserum only. (d) qRTPCR analysis demonstrated that JWU-A021 $(3 \mu \mathrm{M})$ increased the relative abundance of TRPA1 channel mRNA in primary cell cultures, and that this effect was reduced by $\mathrm{HC} 030031(10 \mu \mathrm{M})$. For this analysis, cultures were maintained for 30 minutes in serum-free DMEM assay buffer containing 5.6 mM glucose and the test compounds. Data are the mean + s.d. of 6 independent assays ($* * \mathrm{p}<0.01$; ANOVA with Bonferroni post test). The top inset illustrates qRT-PCR products detected by agarose gel electrophoresis.
are of potential medical importance due to the fact that small molecule GLP- 1 secretagogues are now under investigation for use in the treatment of T2DM ${ }^{3}$.

It is intriguing that JWU-A021 exerts its GLP-1 secretagogue action by stimulating Ca^{2+} influx through TRPA1 channels. This finding expands on the already established role of TRPA1 channels in peripheral sensory neuron function ${ }^{13}$, and it is consistent with the new view that members of the $\operatorname{Tr} p$ ion channel family participate in the control of multiple intestinal cell functions ${ }^{15,16}$. Since Ca^{2+}-dependent exocytosis of GLP-1 from L-cells is stimulated by ingested nutrients ${ }^{17-19}$, orally administered JWU-A021 might activate intestinal TRPA1 channels so that it replicates the GLP-1 secretagogue effect of such nutrients. If so, synthetic small molecule TRPA1 channel activators might constitute a new class of blood glucose-lowering agents. This general line of thinking is consistent with an emerging field of investigation in which TRPA1 channel-targeted drug discovery is applied for disease processes unrelated to sensory neuron function ${ }^{20}$.

When considering a possible use of JWU-A021 in therapeutics, it is noteworthy that the TRPA1 channel activator cinnamaldehyde exerts blood glucose-lowering and weight-reducing actions in mice ${ }^{21}$. However, cinnamaldehyde is an electrophile that is not a specific TRPA1 channel activator owing to its promiscuous alkylating properties. JWU-A021 avoids such non-specificity since it is not an electrophile and most likely acts independently of covalent TRPA1 channel modification. While a few non-electrophilic, non-covalent TRPA1 activators are reported (e.g., carvacrol) ${ }^{4}$, only one (PF-4840154) is especially potent ${ }^{22}$. Unfortunately, PF-4840154 is a hERG K^{+}channel inhibitor and it has the predicted adverse side effect to induce cardiac arrhythmia ${ }^{22}$.

One prior in vivo study failed to detect elevated levels of GLP-1 in the blood after oral administration of the TRPA1 channels activators cinnamaldehyde and methyl syringate to mice ${ }^{23}$. However, levels of the intestinal hormone peptide YY (PYY) were elevated in the blood, and this effect was suppressed by a TRPA1 channel blocker ${ }^{23}$. Since GLP-1 and PYY are co-secreted from L-cells ${ }^{24}$, the failure of cinnamaldehyde and methyl syringate to raise circulating levels of GLP-1 seems paradoxical. However, detection of circulating GLP-1 is complicated owing to its rapid degradation and inactivation by dipeptidylpeptidase-4 (DPP-4), as well as its quick clearance from the systemic circulation ${ }^{25}$. Ideally, quantification of secreted GLP-1 must be based on its concentration immediately at the site of its release in the intestine where it exerts a local effect to activate vagal sensory neurons within the intestinal wall so that vasovagal reflexes important to global metabolic homeostasis can be initiated ${ }^{26,27}$. Although prior studies were performed using mice, a rationale exists for future studies examining TRPA1 channel-dependent regulation of GLP- 1 secretion from human L-cells.

Although not a focus of the report here, we recently found that JWU-A021 failed to stimulate GLP-1 release from GLUTag cells, a mouse L-cell line ${ }^{28}$. Furthermore, JWU-A021 failed to increase the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in GLUTag cells, whereas AITC exerted only a weak effect (data not shown). Such findings are consistent with one prior report documenting low level expression of TRPA1 mRNA in GLUTag cells, whereas higher levels exist in STC-1 cells and mouse L-cells ${ }^{9}$. Evidently, GLUTag cells do not recapitulate the TRPA1 channel expression that is characteristic of mouse L-cells. For these reasons, species-specific and cell line-specific actions of TRPA1 channel activators such as JWU-A021 must be taken into account when planning high throughput screening approaches targeted at the identification of new GLP- 1 secretagogues.

Conclusion

Summarized here are $(4+3)$ and $(3+2)$ annulation strategies that we believe will be generally applicable to the synthesis of small molecule cycloalka[b]indole libraries that are useful for drug screening purposes. The feasibility of this approach is established herein by demonstrating the rapid synthesis, purification, identification, and characterization of cyclohepta $[b]$ indoles with potent GLP-1 releasing properties. The power of this approach is further emphasized in that the $(4+3)$ annulation strategy is revealed to be an effective means with which to generate novel TRPA1 channel activators. Therefore, findings presented here validate a new strategy for small molecule combinatorial library construction. Although in vivo testing to determine the safety and efficacy of JWU-A021 still remains to be achieved, cyclohepta [b]indoles based on the structure of JWU-A021 might find a role in therapeutics as a new class of GLP-1 secretagogues.

Methods

STC-1 and HEK-293 cell culture. STC-1 and HEK-293 cells were obtained from the ATCC (Manassas, VA). Culture medium was comprised of Dulbecco's Modified Eagle Medium (DMEM) containing 25 mM glucose, 10% fetal bovine serum (FBS), 100 units ml^{-1} penicillin G , and $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin. Cultures were passaged once a week while maintained at $37^{\circ} \mathrm{C}$ in a humidified incubator gassed with $5 \% \mathrm{CO}_{2}$. Cultures harvested by trypsinization were plated at a density of $40,000-50,000$ cells per well on rat tail collagen (RTC) coated 96 -well Costar 3904 plates two days prior to each experiment. Cultures were $85-95 \%$ confluent on the day of the experiment. Culture media, additives, Costar plates, and RTC were from Gibco/Thermo Fisher Scientific (Waltham, MA).

Fura-2 based assays of $\left[\mathrm{Ca}^{2+}\right]_{i}$. The fura-2 loading solution for all assays was comprised of a standard extracellular solution (SES; 295 milliosmoles/L) containing (in mM): $138 \mathrm{NaCl}, 5.6 \mathrm{KCl}, 2.6 \mathrm{CaCl}_{2}, 1.2 \mathrm{MgCl}_{2}$, 10 HEPES (adjusted to pH 7.4 with NaOH), and supplemented with 11.1 mM glucose, $20 \mu \mathrm{l} \mathrm{ml}{ }^{-1} \mathrm{FBS}, 1 \mu \mathrm{ml} \mathrm{m}^{-1}$ Pluronic F-127, and 1μ M fura-2 acetoxymethyl ester (fura 2-AM; Thermo Fisher Sci.) ${ }^{29}$. Measurements of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ from monolayers of fura-2 loaded cells were performed at $25^{\circ} \mathrm{C}$ using a FlexStation 3 microplate reader under the control of SoftMaxPro v5.4 software (Molecular Devices, Sunnyvale, CA) ${ }^{29}$. Spectrofluorimetry was performed using excitation light at $335 / 9$ and $375 / 9 \mathrm{~nm}$ (center/bandpass wavelengths) delivered using a 455 nm dichroic mirror. Emitted light was detected at $505 / 15 \mathrm{~nm}$ and the ratio of emission light intensities due to excitation at 335 and 375 nm was calculated. Raw data were exported to Origin v7.5 (Origin Lab., Northhampton, MA)
for processing. Fura-2 based single cell meaurements of $\left[\mathrm{Ca}^{2+}\right]_{i}$ were performed with minor modifications, as described previously ${ }^{30-32}$.

Patch clamp electrophysiology. Membrane currents were recorded in the whole-cell configuration under conditions of voltage clamp in which cells were bathed in $\mathrm{SES}^{33,34}$. The patch pipette solution contained (in mM): 140 Cs -glutamate, $10 \mathrm{NaCl}, 1 \mathrm{MgCl}_{2}, 0.2 \mathrm{EGTA}, 2 \mathrm{MgATP}$, and 5 HEPES adjusted to pH 7.4 with CsOH. Test compounds were added to SES as indicated in the text. Patch pipettes were pulled from thin walled glass capillaries (G85150T-4, Warner Instruments, Hamden, CT) using a P-97 pipette puller (Sutter Inst., Novato, CA) and had resistances of $2-5 \mathrm{M} \Omega$ when filled with the pipette solution. Measurements of membrane currents were obtained using an EPC-9 amplifier controlled using PatchMaster software (HEKA Electronik, Lambrecht/Pfalz, Germany). Test solutions containing JWU-A021 were applied to single cells from a puffer pipette using a PicoSpritzer III pressure ejection system (Parker Hannifin, Hollis, NH). TRPA1 current-voltage relationships were obtained by subtracting the background membrane current from the activated TRPA1 current under conditions in which there was a $1 \mathrm{~V} / \mathrm{s}$ shift of the holding potential, applied as a linear voltage ramp. Whole-cell currents were digitally sampled at a frequency of 10 kHz after filtering at $1-3 \mathrm{kHz}$. Current amplitudes were normalized to cell capacitance.

Expression of recombinant TRPA1. JM109 competent E. coli (Promega, Madison, WI) were transformed with plasmid DNA, and antibiotic resistance selection was used to obtain single bacterial colonies expressing the indicated rat TRPA1 plasmid DNAs. These plasmids were isolated from bacteria using a HiSpeed Midi Kit (Qiagen, Valencia, CA). Transient transfection of HEK-293 cells with these plasmids was performed using Lipofectamine and Plus reagent according to the manufacturer's protocol (Thermo Fisher Scientific).

Sources of plasmids, channel blockers, and activators. A mutant rat C622S TRPA1 construct, and also the wild-type TRPA1 coding sequence (GenBank No. AY496961.1) fused at its 5^{\prime} terminus to the yellow fluorescent protein (YFP), were provided by Prof. Emily Liman (University of Southern California, USA) ${ }^{14,35}$. A967079, AP-18, and HC030031 were from Tocris Biosci. (Minneapolis, MN). AITC, ATP, and nimodipine were from Sigma-Aldrich (St. Louis, MO).

STC-1 cell GLP-1 secretion assay. STC-1 cells were maintained in RTC-coated 96 -well cell culture plates and were allowed to reach $85-95 \%$ confluence. On the day of the experiment, the culture medium was replaced with DMEM containing 5.6 mM glucose and 0.1% bovine serum albumin (BSA) and the cells were then serum starved for 3 hours while equilibrated in a tissue culture incubator. The medium was then replaced with the fresh DMEM containing 5.6 mM glucose and 0.1% BSA with or without the indicated test solutions so that there were four wells per each experimental condition. STC-1 cells were exposed to these test solutions for 30 min while again being equilibrated in a cell culture incubator. Medium from each of the four wells was collected and stored at $-80^{\circ} \mathrm{C}$ prior to immunoassays. GLP- 1 in these samples was detected using a GLP-1 Total ELISA kit (Cat. No. EZGLP1T-36K; EMD Millipore, Billerica, MA) according to the manufacturer's instructions. O.D. values for ELISA assay samples were measured using a Benchmark Plus plate-reading spectrophotometer under the control of Microplate Manager software (Bio-Rad Laboratories, Hercules, CA). Each experiment was repeated 3 times so that the data are the average of $N=3$ experiments. Data were evaluated for statistical significance by a paired t test. A p-value of <0.05 was considered to be statistically significant.

Ethical use of vertebrate animals. All experiments using mice were performed in accordance with relevant guidelines and regulations specified in the Animal Welfare Act (AWA) (7 U.S.C. $\$ 2131$) per United States of America federal government law. Ethical use of mice for the experiments reported here were also in accordance with an animal use protocol (IACUC \#338) that was approved by the Institutional Animal Care and Use Committee of SUNY Upstate Medical University.

Neonatal mouse intestinal cell culture. Newborn mice (C57BL/6) from Charles River Laboratories (Wilmington, MA) were used for preparation of mixed primary intestinal cell cultures enriched with L-cells using a modification of previously published techniques ${ }^{36-38}$.

Step \#1. Newborn mice (C57BL/6) from Charles River Laboratories (Wilmington, MA) were euthanized according to a SUNY Upstate Medical University animal use protocol (IACUC \#338, mice for a separate project donated by Dr. Li-Ru Zhao). The entire intestine was removed, rinsed, and chopped into $1-2 \mathrm{~mm}$ pieces in ice-cold Ca^{2+}-free Hank's balanced salt solution containing 0.65 mM dithiothreitol, 1% BSA, penicillin, streptomycin, $9.05 \mathrm{mM} \mathrm{N}_{\mathrm{a}} \mathrm{HCO}_{3}$, and 20 mM HEPES. The tissue was then digested for 15 min in a $37^{\circ} \mathrm{C}$ shaking water bath incubator using 5 ml of $100 \mathrm{U} / \mathrm{ml}$ collagenase type I (Sigma) in Basal Medium Eagle (Thermo Fisher Scientific) and supplemented with 1% BSA, $26.4 \mathrm{mM} \mathrm{N}_{\mathrm{a}} \mathrm{HCO}_{3}$, and 10 mM HEPES (pH 6.9). Digested tissue was centrifuged at $120 \times \mathrm{g}$ and the resulting pellet was re-suspended in DMEM containing 5.6 mM glucose (Cat. \#11885, Gibco/Thermo Fisher), penicillin, streptomycin, and 5\% FBS.

Step \#2. The re-suspended tissue digest derived by centrifugation was filtered through an $80 \mu \mathrm{~m}$ nylon filter (Merk Millilipore, Darmstadt, Germany). The filtered eluent containing intestinal cells was subjected to two rounds of centrifugation at $120 \times \mathrm{g}$ for 3 min each cycle in DMEM containing 2% sorbitol. The final pellet was re-suspended in DMEM containing penicillin, streptomycin, 10% FBS, $1 \mu \mathrm{~g} / \mathrm{ml}$ insulin (Sigma), and $20 \mathrm{ng} / \mathrm{ml}$ epidermal growth factor (EGF, Sigma). Cells were added to culture plates (Cat. No. 10062-892, VWR International, LLC, Radnor, PA) for culture at $37^{\circ} \mathrm{C}$ in DMEM containing 5.6 mM glucose, penicillin, streptomycin, and 5% FBS.

GLP-1 release assay. Primary cell cultures enriched with mouse L-cells were allowed to achieve 70-90\% confluence in a humidified incubator gassed with $5 \% \mathrm{CO}_{2}$. On the day of the experiment, they were equilibrated for 3 hours in serum-free DMEM containing 5.6 mM glucose, penicillin, streptomycin, and 0.1% BSA. After washing the cultures three times with serum-free DMEM, GLP-1 release assays were performed for 30 minutes during which the cells were exposed to test compounds dissolved in serum-free DMEM containing 5.6 mM glucose and 0.1% BSA. An EIA-GLP-1 ELISA kit (RayBio, Norcross, GA) was used to detect GLP-1 released into the assay medium. All samples were assayed in duplicate.

RT-PCR for TRPA1 mRNA. RNA was isolated from STC-1 cells using RNeasy kits (Qiagen). Quantitect Reverse Transcriptase (RT) kits (Qiagen) were used to generate cDNA per kit instructions with control reactions performed without RT. The PCR primers were designed against a mouse sequence for TRPA1(GenBank NM_177781.4) and had the following sequences: Sense primer [ATGTCACCCCTTCACATAGC]; Anti-sense primer \# 1 [CGTGTTCCCATTCTCTCCTT]; Anti-sense primer \#2 [GGCTGGCTTTCTTGTGATTC]. Both anti-sense primers were used with the same sense primer. PCR products spanned one or two exons and had predicted product sizes of 109 and 331 bp , repectively. PCR reactions were performed using a Mini-Opticon cycler (Bio-Rad, Hercules, CA) and a QuantiTect SYBR-Green PCR kit (Qiagen). The thermal cycle parameters were: $95^{\circ} \mathrm{C}$ for 15 min followed by 35 cycles of $95^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 57^{\circ} \mathrm{C}$ for 30 s and $72^{\circ} \mathrm{C}$ for 30 s . A melting curve analysis was performed from $60^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and products were run on 2% agar gels to test product specificity using GelRed loading buffer and a pre-stained DNA marker (GenScript, Piscataway, NJ). PCR products were extracted from these gels using a QIAquick Gel Extraction kit (Qiagen).
qRT-PCR for TRPA1 mRNA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to detect TRAP1 mRNA expression in mixed primary L-cell cultures. Cells were lysed in Trizol (Invitrogen) and total RNA was extracted. First-strand cDNA synthesis was performed with $1 \mu \mathrm{~g}$ of total RNA in $20 \mu \mathrm{l}$ reactions using an iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA). qRT-PCR was then performed using iQ SYBR Green Mix (Bio-Rad, Hercules, CA). Relative gene expression was determined by the CT method, and TRPA1 mRNA levels were normalized relative to the levels of glyceraldehyde phosphodehydrogenase (GAPDH) mRNA. Primers used for TRAP1 were: sense 5^{\prime}-CCATGACCTGGCAGAATACC- 3^{\prime} and antisense 5^{\prime}-TGGAGAGCGTCCTTCAGAAT- 3^{\prime}. Primers used for GAPDH were: sense 5^{\prime}-CAATGTGTC CGTGGA- ${ }^{\prime}$ and antisense 5^{\prime}-GATGCCTGCTTCACCACC-3.

Immunocytochemistry for detection of GLP-1. Cultures of mouse intestinal cells were fixed for 10 min at room temperature in PBS containing 4\% paraformaldehyde, and were then permeabilized by incubation for 10 min in PBS containing 0.25% Triton X-100. The blocking buffer was PBS-Tween containing 1\% BSA. Cells were exposed at $4^{\circ} \mathrm{C}$ overnight to PBS-Tween containing a 1:50 dilution of a mouse monoclonal anti-GLP-1 antibody (Cat. No. AB23468, Abcam, Cambridge, MA). A goat anti-mouse polyclonal antiserum conjugated to horseradish peroxidase (HRP) served as the secondary antibody (Cat. No. 1706516, Bio-Rad, Hercules, CA). A DAB Stain kit (Vector, CA) was used to detect the HRP reaction product that signified GLP-1 immunoreactivity, whereas hematoxylin was used to detect nuclei. Photomicrographs were taken with an Eclipse TE 2000-U microscope (Nikon).

Primary and secondary screens of a cycloalka[b]indole library. The ELISA-based primary screen to identify JWU-A021 as a GLP-1 secretagogue was performed as part of the Open Innovation Drug Discovery Program (OIID) of Eli Lilly and Company. Subsequent identification of JWU-A021 as a TRPA1 channel activator was achieved at the Holz laboratory in a fura-2-based secondary screen that used a panel of calcium channel blockers or activators. OIID screening data presented in Fig. 2a-c was supplied courtesy of Eli Lilly and Company-used with Lilly's permission. To learn more about the Lilly Open Innovation Drug Discovery Program, please visit the program website at https://openinnovation.lilly.com (last accessed on 05-04-2016).

Statistical analyses. The repeatability of findings was confirmed by performing all experiments a minimum of three times. GLP-1 secretion assay data and qRT-PCR data were evaluated for statistical significance by Student's paired t test or by ANOVA analysis followed by a Bonferroni post test, as indicated in the figure legends. For all assays, a p-value of <0.05 was considered to be statistically significant. Appropriate sample size was determined post-hoc so that the sample size could be increased, if necessary, so that statistical significance would be achieved if it existed.

References

1. Vitaku, E., Smith, D. T. \& Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals: miniperspective. J. Med. Chem. 57, 10257-10274 (2014).
2. Han, X., Li, H., Hughes, R. P. \& Wu, J. Gallium(III)-catalyzed three-component $(4+3)$ cycloaddition reactions. Angew. Chem. Int. Ed. 51, 10390-10393 (2012).
3. Nadkarni, P., Chepurny, O. G. \& Holz, G. G. Regulation of glucose homeostasis by GLP-1. Prog. Molec. Biol. Trans. Res. 12, 23-65 (2014).
4. Nilius, B., Appendino, G. \& Owsianik, G. The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch. 464, 425-458 (2012).
5. Rindi, G. et al. Development of neuroendocrine tumors in the gastrointestinal tract of transgenic mice. Heterogeneity of hormone expression. Am. J. Pathol. 136, 1349-1363 (1990).
6. Grant, S. G. N., Seidman, I., Hanahan, D. \& Bautch, V. L. Early invasiveness characterizes metastatic carcinoid tumors in transgenic mice. Cancer Res. 51, 4917-4923 (1991).
7. Abello, J. et al. Stimulation of glucagon-like peptide-1 secretion by muscarinic agonist in a murine intestinal endocrine cell line. Endocrinology 134, 2011-2017 (1994).
8. Purhonen, A. K., Louhivuori, L. M., Kiehne, K., Akerman, K. E. O. \& Herzig, K. H. TRPA1 channel activation induces cholecystokinin release via extracellular calcium. FEBS Lett. 582, 229-232 (2008).
9. Emery, E. C. et al. Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1. Diabetes 64, 1202-1210 (2014).
10. Rogers, G. J. et al. Electrical activity-triggered glucagon-like peptide-1 secretion from primary murine L-cells. J. Physiol. 589, 1081-1093 (2011).
11. Flack, H. D. \& Bernardinelli, G. The use of X-ray crystallography to determine absolute configuration. Chirality 20, 681-690 (2008).
12. Caterall, W. A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3(8), a003947 (2011).
13. Julius, D. TRP channels and pain. Ann. Rev. Cell. Develop Biol. 29, 355-384 (2013).
14. Wang, Y. Y., Chang, R. B., Allgood, S. D., Silver, W. L. \& Liman, E. R. A TRPA1-dependent mechanism for the pungent sensation of weak acids. J. Gen. Physiol. 137, 493-505 (2011).
15. Boesmans, W., Owsianik, G., Tack, J., Voets, T. \& Berghe, P. V. TRP channels in neurogastroenterology: opportunities for therapeutic intervention. British J. Pharmacol. 162, 18-37 (2011).
16. Fernandes, E. S., Fernandes, M. A. \& Keeble, J. E. The functions of TRPA1 and TRPV1: moving away from sensory neurons. British J. Pharmacol. 166, 510-521 (2012).
17. Lim, G. E. \& Brubaker, P. L. Glucagon-like peptide-1 secretion by the L-cell: the view from within. Diabetes 55(S2), S70-S77 (2006).
18. Diakogiannaki, E., Gribble, F. M. \& Reimann, F. Nutrient detection by incretin hormone secreting cells. Physiol. \& Behavior 106, 387-393 (2012).
19. Psichas, A., Reimann, F. \& Gribble, F. M. Gut chemosensing mechanisms. J. Clin. Invest. 125, 908-917 (2015).
20. Chen, J. \& Hackos, D. H. TRPA1 as a drug target-promise and challenges. Naunyn-Schmiedeberg's Arch. Pharmacol. 388, 451-463 (2015).
21. Camacho, S. et al. Anti-obesity and anti-hyperglycemic effects of cinnamaldehyde via altered ghrelin secretion and functional impact on food intake and gastric emptying. Sci. Rep. 5, 7919 (2015).
22. Ryckmans, T. et al. Design and pharmacological evaluation of PF-4840157, a non-electrophilic reference agonist of the TRPA1 channel. Bioorg. Med. Chem. Lett. 21, 4857-4859 (2011).
23. Kim, M. J. et al. The TRPA1 agonist, methyl syringate suppresses food intake and gastric emptying. PLoS One 8(8), e71603 (2013).
24. De Silva, A. \& Bloom, S. R. Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver 6, 10-20 (2012).
25. Holst, J. J. The physiology of glucagon-like peptide-1. Physiol. Rev. 87, 1409-1439 (2007).
26. D'Allesio, D. A. What if gut hormones aren't really hormones: DPP-4 inhibition and local action of GLP-1 in the gastrointestinal tract. Endocrinology 152, 2925-2926 (2011)
27. D'Alessio, D. A. Is GLP-1 a hormone: whether and when? J. Diabetes Investig. 7, 50-55 (2016).
28. Drucker, D. J., Jin, T., Asa, T. L., Young, T. A. \& Brubaker, P. L. Activation of proglucagon gene transcription by protein kinase A in a novel mouse enteroendocrine cell line. Mol. Endocrinol. 8, 1646-1655 (1994).
29. Chepurny, O. G., Holz, G. G., Roe, M. W. \& Leech, C. A. GPR119 agonist AS1269574 activates TRPA1 cation channels to stimulate GLP-1 secretion. Mol. Endocrinol. 30, 614-29 doi: http://dx.doi.org/10.1210/me.2015-1306, in press (2016).
30. Leech, C. A., Holz, G. G. \& Habener, J. F. Pituitary adenylyl cyclase-activating protein induces the voltage-independent activation of inward membrane currents and elevation of intracellular calcium in HIT-T15 insulinoma cells. Endocrinol. 136, 1530-1536 (1995).
31. Holz, G. G. \& Habener, J. F. Black widow spider alpha-latrotoxin: a presynaptic neurotoxin that shares structural homology with the glucagon-like peptide-1 family of insulin secretagogic hormones. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 121, 177-184 (1998).
32. Kopp, R. F., Leech, C. A. \& Roe, M. W. Resveratrol interferes with fura-2 intracellular calcium measurements. J. Fluoresc. 24, 279-284 (2014).
33. Leech, C. A. \& Holz, G. G. Application of patch clamp methods to the study of calcium currents and calcium channels. Methods Cell. Biol. 40, 135-151 (1994).
34. Leech, C. A., Holz, G. G. \& Habener, J. F. Voltage-independent calcium channels mediate slow oscillations of cytosolic calcium that are glucose-dependent in pancreatic beta-cells. Endocrinol. 135, 365-372 (1994).
35. Wang, Y. Y., Chang, R. B., Waters, H. N., McKemy, D. D. \& Liman, E. R. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem. 283, 32691-703 (2008).
36. Evans, G. S., Flint, N., Somers, A. S., Eyden, B. \& Potten, C. S. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J. Cell Sci. 101, 219-231 (1992).
37. Damholt, A. B., Buchan, A. M. \& Kodfod, H. Glucagon-like peptide-1 secretion from canine L-cells is increased by glucosedependent insulinotropic peptide but unaffected by glucose. Endocrinology 139, 2085-2091 (1998).
38. Reimann, F., Habib, A. M., Tolhurst, G., Rogers, G. J. \& Gribble, F. M. Glucose sensing in L cells: a primary cell study. Cell. Metab. 8, 532-539 (2008).

Acknowledgements

J.W., G.G.H., C.A.L. and M.C.D. acknowledge the support of NIH R01-GM111638. G.G.H., C.A.L. and O.G.C. were supported, in part, by NIH R01-DK069575. M.C.D. was supported, in part, by a GAANN fellowship provided by the United States Department of Education. G.G.H. acknowledges the support of the Holz Laboratory Diabetes Research Fund of the Health Science Center Foundation of SUNY Upstate Medical University. Additional support was provided by American Diabetes Association Basic Research Awards 7-12-BS077 (G.G.H) and 1-12-BS-109 (C.A.L.).

Author Contributions

J.W. invented the chemistry for cycloalka[b]indole library construction. M.T., M.C.D., H.L. and X.H. participated in cycloalka[b]indole synthesis, purification, and characterization. O.G.C. performed STC-1 cell Flexstation 3 assays for Ca^{2+} and GLP-1 release. C.A.L. performed STC-1 cell RT-PCR, single-cell imaging, and patch clamp assays. Q.M. performed qRT-PCR, immunocytochemistry, and GLP-1 release assays using intestinal cell cultures. G.G.H., O.G.C., C.A.L., Q.M. and R.N.C. designed the experiments. O.G.C., C.A.L., M.C.D. and H.L. edited the paper. G.G.H. and J.W. conceived of the project and wrote the paper.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Chepurny, O. G. et al. Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy. Sci. Rep. 6, 28934; doi: 10.1038/srep28934 (2016).

(c) (1)
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy

 Xinping Han ${ }^{2, \dagger}$, Qinghe Meng ${ }^{3}$, Robert N. Cooney ${ }^{3}$, Jimmy Wu ${ }^{2 *}$, George G. Holz ${ }^{1,4 *}$
Departments of Medicine ${ }^{1}$, Surgery ${ }^{3}$, and Pharmacology ${ }^{4}$, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
Department of Chemistry ${ }^{2}$, Dartmouth College, Hanover, New Hampshire, USA ${ }^{\dagger}$ Current Address: Department of Biochemistry, UT Southwestern, Dallas TX 75390
Table of Contents

General Information S2
Synthetic Experimental Procedures S3
Characterization of Cyclohepta[b]indole products S4
Characterization of Cyclopenta[b]indole products S7
References S11
NMR Spectra
JWU-A029 S12
JWU-A030 S18
JWU-A031 S24
JWU-A033 S30
JWU-A034 S36
(syn)-JWU-B007 S42
(anti)-JWU-B008 S47
(syn)-JWU-B009 S53
(anti)-JWU-B010 S59
(anti)-JWU-B011 S65
(syn)-JWU-B012 S71
JWU-B014 S77
X-Ray Crystallography Data for (-)-JWU-A021 S82

General Information

${ }^{1} \mathrm{H}$ NMR data were recorded on a Bruker Avance III 500 MHz spectrometer (TBI probe) and Bruker Avance III 600 MHz (BBFO probe) with calibration spectra to CHCl_{3} (7.26 ppm) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.32 \mathrm{ppm})$ at ambient temperature. Multiplicities are indicated as s (singlet), d (doublet), t (triplet), and m (multiplet). ${ }^{13} \mathrm{C}$ NMR data were recorded at 125 MHz on Bruker Avance III 600 MHz spectrometer (BBFO probe) at ambient temperature and expressed in ppm using solvent as the internal standard $\mathrm{CD}_{2} \mathrm{Cl}_{2}(53.84 \mathrm{ppm})$ and CDCl_{3} (77.16 ppm). IR spectra were recorded on Jasco FT-IR 4100 Series spectrophotometer, $\mathrm{v}_{\max }$ $\left(\mathrm{cm}^{-1}\right)$ are partially reported. Analytical thin layer chromatography (TLC) was performed on SILICYCLE pre-coated TLC plates (silica gel 60 F-254, 0.25 mm). Flush column chromatography was performed on silica gel 60 (SILICYCLE 230-400 mesh). Visualization was accomplished with UV light and ceric ammonium molybdate (CAM). High-resolution mass spectroscopy data were acquired from Mass Spectrometry Laboratory of the University of Illinois (Urbana-Champaign, IL).

All reactions were carried out in oven-dried glassware with magnetic stirring. Solvents were freshly distilled. All reagents and starting materials were purchased from commercial vendors and used without further purification.

Experimental Procedures

General Procedure \boldsymbol{A} for the Synthesis of Cyclohepta[b]indoles

A round-bottom flask was charged with indole ($0.66 \mathrm{mmol}, 1$ equiv), aldehyde or ketone (1.32 mmol , 2 equiv), and diene (3.30 mmol , 5 equiv). Then, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added followed by GaBr_{3} ($0.07 \mathrm{mmol}, 0.1$ equiv). The reaction was stirred at room temperature until it was complete as judged by thin layer chromatography. The volatiles were concentrated in vacuo and the residue was purified via silica gel flash chromatography ($\mathrm{EtOAc} / \mathrm{Hexanes}$) to yield the desired products.

General Procedure B for the Synthesis of Cyclopenta[b]indoles

A round-bottom flask was charged with indole ($0.66 \mathrm{mmol}, 1$ equiv), aldehyde or ketone ($1.32 \mathrm{mmol}, 2$ equiv), and styrene ($3.30 \mathrm{mmol}, 5$ equiv). Then, dichloroethane (2.0 mL) was added followed by TfOH ($0.13 \mathrm{mmol}, 0.2$ equiv). The reaction was stirred at room temperature until it was complete as judged by thin layer chromatography. The volatiles were concentrated in vacuo and the residue was purified via silica gel flash chromatography ($\mathrm{EtOAc} / \mathrm{Hexanes}$) to yield the desired products.

Characterization of Cyclohepta[b]indole products

The preparation of JWU-A001 through JWU-A021 were carried out as previously described. ${ }^{1}$ All characterization data were identical to those previously reported. ${ }^{1}$ FIG. S1

JWU-A029

By following the general procedure A described above, JWU-A029 was prepared in 43\% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta, \mathrm{ppm} 8.04(1 \mathrm{H}, \mathrm{s}), 7.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.14$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5,9.0 \mathrm{~Hz}), 6.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,5.6 \mathrm{~Hz}), 5.85(1 \mathrm{H}$, dd, $\mathrm{J}=3.0,6.3 \mathrm{~Hz}), 4.13(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}), 3.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $3.3,4.8 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}), 2.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}), 2.13-2.09(1 \mathrm{H}, \mathrm{m}), 1.23$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 173.6,142.4,140.5,133.0,131.6$, $129.5,125.2,120.5,117.9,111.6,101.6,60.8,42.3,41.3,39.6,38.8,14.0$; IR (film, cm^{-1}): 3401, 2957, 2846, 1713, 1644, 1468, 1259, 732; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClNO}_{2}$ $\left(\mathrm{m} / \mathrm{z} \mathrm{M}+\mathrm{H}^{+}\right): 302.0948$, found: 302.0950.

FIG. S2

JWU-A030

By following the general procedure A described above, JWU-A030 was prepared in 57\% yield. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta, \operatorname{ppm} 8.01(1 \mathrm{H}, \mathrm{s}), 7.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}), 7.13$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.7,8.0 \mathrm{~Hz}), 6.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,5.4 \mathrm{~Hz}), 5.70(1 \mathrm{H}$, dd, $\mathrm{J}=3.2,5.2 \mathrm{~Hz}), 4.17-4.11(1 \mathrm{H}, \mathrm{m}), 4.06-3.98(1 \mathrm{H}, \mathrm{m}), 3.29(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}), 3.01$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,4.8 \mathrm{~Hz}), 2.24(2 \mathrm{H}, \mathrm{m}, \mathrm{J}=4.9 \mathrm{~Hz}), 2.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.9 \mathrm{~Hz}), 1.63(3 \mathrm{H}, \mathrm{s})$, $1.16(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 175.2,140.7,140.4,132.9,131.5$, 129.0, 124.7, 120.1, 119.0, 111.7, 108.0, 60.5, 49.9, 46.1, 40.9, 39.0, 25.7, 14.0; IR (film, cm^{-1}): 3455, 3048, 2981, 1720, 1637, 1451, 1262, 736; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNO}_{2}\left(\mathrm{~m} / \mathrm{z} \mathrm{M}+\mathrm{H}^{+}\right)$: 316.1104, found: 316.1104.

FIG. S3

JWU-A031

By following the general procedure A described above, JWU-A031 was prepared in 11\% yield. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta, \operatorname{ppm} 7.84(1 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.13$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,8.6 \mathrm{~Hz}), 6.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,8.0 \mathrm{~Hz}), 6.00(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}), 4.11-4.05(1 \mathrm{H}, \mathrm{m}), 4.02-3.96(1 \mathrm{H}, \mathrm{m}), 3.24(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}), 2.87(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7.6 \mathrm{~Hz}), 2.08-1.96(2 \mathrm{H}, \mathrm{m}), 1.85-1.78(1 \mathrm{H}, \mathrm{m}), 1.71-1.65(1 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}, \mathrm{s}), 1.12$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 175.6,139.3,135.9,132.7,130.9$, $130.4,124.6,120.7,120.6,119.9,110.6,60.7,42.2,34.2,30.2,24.3,19.0,14.1,14.0 ;$ IR (film, cm^{-1}): 3399, 2923, 2853, 1720, 1637, 796; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ $\left(\mathrm{m} / \mathrm{z} \mathrm{M}+\mathrm{H}^{+}\right): 330.1261$, found: 330.1254 .

By following the general procedure A described above, JWU-A033 was prepared in 25\% yield. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta, \operatorname{ppm} 8.18(1 \mathrm{H}, \mathrm{s}), 7.95(1 \mathrm{H}, \mathrm{s}), 7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.6$ $\mathrm{Hz}), 7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8,8.9 \mathrm{~Hz}), 6.94$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,8.1 \mathrm{~Hz}), 6.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,5.1 \mathrm{~Hz}), 5.71(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=3.4,5.5 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.7 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.3,3.3 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=14.2 \mathrm{~Hz}), 2.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.3,4.8 \mathrm{~Hz}), 2.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 2.12-2.08(1 \mathrm{H}, \mathrm{m})$, $1.19(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.3 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 140.9,139.6,134.4,133.1$, $132.8,130.2,128.7,125.4,124.8,124.4,121.6,119.7,118.7,118.6,113.0,112.1,112.0$, 111.6, 48.8, 40.2, 40.1, 39.0, 37.0, 21.7; IR (film, cm^{-1}): 3427, 2920, 2853, 1648, 1436, 1098, 737; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2}\left(\mathrm{~m} / \mathrm{z} \mathrm{M}+\mathrm{H}^{+}\right)$: 407.1082, found: 407.1074. FIG. S5

By following the general procedure A described above, JWU-A034 was prepared in 58\% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta, \mathrm{ppm} 7.87(1 \mathrm{H}, \mathrm{s}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 7.14$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,8.4 \mathrm{~Hz}), 6.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.9,5.9 \mathrm{~Hz}), 5.85(1 \mathrm{H}$, dd, $\mathrm{J}=3.5,5.3 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,3.9 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.2,5.2 \mathrm{~Hz}), 2.69-2.63$
$(1 \mathrm{H}, \mathrm{m}), 2.56-2.50(1 \mathrm{H}, \mathrm{m}), 2.20-2.07(3 \mathrm{H}, \mathrm{m}), 2.06-1.99(2 \mathrm{H}, \mathrm{m}), 1.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8$ $\mathrm{Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 142.0,141.3,133.2,131.7,128.9,124.7,119.8$, $117.6,111.8,111.6,49.8,41.6,41.1,39.1,35.3,27.5,15.0$; IR (film, cm^{-1}): 3399, 2923, 2853, 1644, 1467, 1439, 1067, 741; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClN}\left(\mathrm{m} / \mathrm{z} \mathrm{M}+\mathrm{H}^{+}\right)$: 270.1050 , found: 270.1050 .

Characterization of Cyclopenta[blindole products

FIG. S6

(syn)-JWU-B007

(syn)-JWU-B007

(anti)-JWU-B008

(anti)-JWU-B008

By following the general procedure \mathbf{B} described above, a 1:1 diastereomeric mixture (syn)-JWU-B007 and (anti)-JWU-B008 was prepared in 65% combined yield. For (syn)-JWUB007, ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta, \operatorname{ppm} 7.82(1 \mathrm{H}, \mathrm{s}), 7.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}), 7.12$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.04(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.99(3 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.8,8.8,3.5 \mathrm{~Hz}), 4.36(1 \mathrm{H}$, dd, $\mathrm{J}=6.9,8.0 \mathrm{~Hz}), 4.12-4.07(2 \mathrm{H}, \mathrm{m}), 2.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0,13.5 \mathrm{~Hz}), 2.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $8.6,13.3 \mathrm{~Hz}), 2.23(3 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}) ;$
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 176.0,146.0,139.9,139.4,136.6,129.3,127.4,125.2$, $124.6,122.7,121.2,118.8,112.5,60.9,51.5,49.3,43.3,25.1,20.7,14.0 ;$ IR (film, cm^{-1}):

3423, 2923, 2860, 1644, 1449, 1289, 1025, 789; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{2}$ (m/z M+H ${ }^{+}$): 368.1417, found: 368.1417; For (anti)-JWU-B008, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600\right.$ $\mathrm{MHz}): \delta, \operatorname{ppm} 7.83(1 \mathrm{H}, \mathrm{s}), 7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.06(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7.5 \mathrm{~Hz}), 7.00(3 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=5.7,5.7,13.9 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}), 4.06-4.00(2 \mathrm{H}$, $\mathrm{m}), 3.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,13.2 \mathrm{~Hz}), 2.25(3 \mathrm{H}, \mathrm{s}), 2.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,12.9 \mathrm{~Hz}), 1.65(3 \mathrm{H}$, s), $1.15(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 175.7,146.7,140.2,139.3$, $136.6,129.4,127.4,125.2,124.7,122.5,121.1,118.3,112.6,60.9,52.7,49.5,44.2,25.2$, 20.7, 14.0; IR (film, cm^{-1}): 3421, 2918, 2853, 1640, 1374, 1287, 861; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{2}\left(\mathrm{~m} / \mathrm{z} \mathrm{M}+\mathrm{H}^{+}\right)$: 368.1417 , found: 368.1409 .

FIG. S7

(syn)-JWU-B009

(syn)-JWU-B009

(anti)-JWU-B010

(anti)-JWU-B010

By following the general procedure \mathbf{B} described above, a 1:1 diastereomeric mixture (syn)-JWU-B009 and (anti)-JWU-B010 as prepared in 44\% combined yield. For (syn)-JWUB009, ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta, \operatorname{ppm} 7.87(1 \mathrm{H}, \mathrm{s}), 7.54(1 \mathrm{H}, \mathrm{s}), 7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3$ $\mathrm{Hz}), 7.05(4 \mathrm{H}, \mathrm{s}), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6,7.6 \mathrm{~Hz}), 4.15(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=6.4,14.6 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}), 3.19-3.13(1 \mathrm{H}, \mathrm{m}), 2.67-2.61(1 \mathrm{H}, \mathrm{m}), 2.23$
(3H, s), $1.25(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 173.6,147.5,140.0$, $139.5,136.7,129.3,127.5,125.3,125.1,121.3,118.8,117.4,112.5,60.9,44.0,43.1,42.7$, 20.7, 14.1; IR (film, cm^{-1}): 3583, 3357, 2916, 2850, 1713, 1289, 1070, 657; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{2}\left(\mathrm{~m} / \mathrm{z} \mathrm{M}+\mathrm{H}^{+}\right)$: 354.1261, found: 354.1253; For (anti)-JWU-B010, ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta, \operatorname{ppm} 7.89(1 \mathrm{H}, \mathrm{s}), 7.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=9.1 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,8.8 \mathrm{~Hz}), 6.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})$, $4.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3,7.3 \mathrm{~Hz}), 4.13-4.07(3 \mathrm{H}, \mathrm{m}), 3.30-3.24(1 \mathrm{H}, \mathrm{m}), 2.52-2.47(1 \mathrm{H}, \mathrm{m})$, $2.23(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 173.7,147.9,140.3$, $139.4,136.6,129.4,127.1,125.3,125.0,121.3,118.6,117.5,112.6,60.9,43.9,43.5,42.9$, 20.6, 14.1; IR(film, cm^{-1}): 3359, 2919, 2846, 1707, 1640, 1204, 1037, 857, 726; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{2}\left(\mathrm{~m} / \mathrm{z} \mathrm{M}+\mathrm{H}^{+}\right)$: 354.1261 , found: 354.1261 .

> FIG. S8

(anti)-JWU-B011

(syn)-JWU-B012

(anti)-JWU-B011

(syn)-JWU-B012

By following the general procedure \mathbf{B} described above, a $1: 1$ diastereomeric mixture of (anti)-JWU-B011 and (syn)-JWU-B012 was prepared in 27% combined yield. For (anti)-JWU-B011, ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta, \operatorname{ppm} 8.01(1 \mathrm{H}, \mathrm{s}), 7.69(1 \mathrm{H}, \mathrm{s}), 7.25$
$(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.18-7.10(4 \mathrm{H}, \mathrm{m}), 7.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1,8.8$ $\mathrm{Hz}), 6.90(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{s}), 4.76(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $8.0,13.9 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8,14.6 \mathrm{~Hz}), 2.26(3 \mathrm{H}, \mathrm{s}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right):$ $\delta 180.3,148.9,139.9,139.6,139.5,137.0,134.6,129.4,128.0,127.8,125.4,123.4,123.3$, 122.7, 121.7, 120.1, 117.1, 112.8, 109.6, 54.0, 52.5, 44.5, 20.7; IR (film, cm^{-1}): 3397, 2918, 2360, 1709, 1465, 1290, 1098, 805; HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}\left(\mathrm{m} / \mathrm{z} \mathrm{M}+\mathrm{H}^{+}\right)$: 399.1261, found: 399.1257; For (syn)-JWU-B012, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta, \mathrm{ppm}$ $7.92(1 \mathrm{H}, \mathrm{s}), 7.47(1 \mathrm{H}, \mathrm{s}), 7.19(3 \mathrm{H}, \mathrm{s}), 7.11(2 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=6.7,6.7,6.7 \mathrm{~Hz}), 6.99-6.94(3 \mathrm{H}$, $\mathrm{m}), 6.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.7 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}), 3.38(1 \mathrm{H}$, ddd, $\mathrm{J}=6.8,6.8,6.8 \mathrm{~Hz}), 2.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.6,14.4 \mathrm{~Hz}), 2.30(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}): \delta 180.6,148.6,139.7,139.6,139.2,137.1,134.5,129.6,128.1,127.9,125.7$, 123.6, 123.4, 122.9, 121.9, 120.1, 117.6, 112.6, 109.6, 54.1, 52.6, 44.6, 21.0; IR (film, cm^{-} ${ }^{1}$): $3273,3186,2923,1692,1619,1468,1339,816$; HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}$ $\left(\mathrm{m} / \mathrm{z} \mathrm{M}+\mathrm{H}^{+}\right): 399.1261$, found: 399.1249 .

FIG. S9

JWU-B014
By following the general procedure B described above, JWU-B014 was prepared in 25\% yield. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta, \operatorname{ppm} 7.70(1 \mathrm{H}, \mathrm{s}), 7.43(1 \mathrm{H}, \mathrm{s}), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9$ $\mathrm{Hz}), 7.03(4 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3,22.8 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.4,8.9 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz})$, $2.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8,12.4 \mathrm{~Hz}), 2.23(3 \mathrm{H}, \mathrm{s}), 2.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3,11.7 \mathrm{~Hz}), 1.42(3 \mathrm{H}, \mathrm{s})$, $1.31(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 144.7,140.9,139.4,136.3,129.3,128.4$,
127.7, 124.7, 124.5, 120.6, 117.6, 112.5, 57.2, 44.1, 39.3, 29.4, 28.5, 20.7; IR (film, cm^{-1}); 3418, 2923, 2853, 1633, 1443, 1287, 1044, 812; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}(\mathrm{m} / \mathrm{z}$ $\mathrm{M}+\mathrm{H}^{+}$); 310.1363, found: 310.1363.

1. Han, X.; Li, H.; Hughes, R. P.; Wu, J. Gallium(III)-Catalyzed Three-Component (4+3) Cycloaddition Reactions. Angew. Chem. Int. Ed. 2012, 52, 10390-10393.

MT-N3-P106-TT29-8-4-5 $10 \quad 1 \quad \mathrm{~N}: \backslash \mathrm{b} 600 \backslash w u \backslash d a t a \backslash w u _g u e s t \backslash n m r$

MT-N3-P102-TT26-5-5 $11 \quad 1 \quad \mathrm{~N}: \backslash \mathrm{b} 600 \backslash$ wu 11 data ${ }^{\text {(wu_guest } \backslash n m r ~}$

MT-N3-P154-TT14-15-ETOAC $10 \quad 1 \quad \mathrm{~N}: \backslash \mathrm{b} 600 \backslash w u \backslash d a t a \backslash w u _g u e s t \backslash n m r$

MT-N3-P128-TT22-24-5-6-C $121 \quad \mathrm{~N}: \backslash \mathrm{b} 600 \backslash \mathrm{wu} \backslash$ data ${ }^{2}$ Wu_guest \backslash nmr

MT-N3-P114-TT12-17-10 $121 \quad \mathrm{~N}: \backslash \mathrm{b} 600 \backslash w u \backslash d a t a \backslash w u _g u e s t \backslash n m r$

MT-N3-P30-TT19-7-8 $11 \quad 1 \quad$ "I: $\backslash 3+2$ Products"

MT-N3-P30-TT19-7-8 10 1 "I:\3+2 Products"

MT-N3-P30-TT22-4-5-un 101 "I: $\backslash 3+2$ Products $\backslash M T-N 3-P 30-T T 20-4-5 "$
wu_guest

MT-N3-P48-TT23-3-4 $10 \quad 1 \quad \mathrm{~N}: \backslash \mathrm{b} 600 \backslash \mathrm{wu} \backslash$ data ${ }^{\text {(wu_guest } \backslash \mathrm{nmr}}$

MT-N3-P48-TT23-3-4 $25 \quad 1 \quad \mathrm{~N}: \backslash \mathrm{b} 600 \backslash w u \backslash d a t a \backslash w u _g u e s t \backslash n m r$

(anti)-JWU-B010

MT-N3-P86-46-48-6-7 $10 \quad 1 \quad$ "I: $\backslash 3+2$ Products"

(anti)-JWU-B011
(anti)-JWU-B011

MT-N3-P86-55-59-7-9 $10 \quad 1$ "I:\3+2 Products"

(syn)-JWU-B012

\square
"MCD-06-02c carbon" 111 /Users/mariacdipoto/Desktop/NMR

m_dipoto

MT-N3-P42-TT6-10-16-17 $10 \quad 1 \quad$ "I: $\backslash 3+2$ Products"

мT-N3-P42-TT6-8-16-17 $10 \quad 1 \quad$ "I: $\backslash 3+2$ Products \backslash MT-N3-P42-TT6-10-16-17"

Structural Data

Date: March 17, 2015
Submitter: Jimmy Wu (Dartmouth)
Sample Reference Number: (-)-JWU-A021
X-ray Number: JW315a

Center Crystallographic for Research
Michigan State University
Department of Chemistry
East Lansing, MI 48824
Dr. Richard J. Staples
staples@chemistry.msu.edu
(Shannon M. Biros, PhD)

Introduction:

Single crystal study to confirm the identity and chirality of the sample submitted. There are eight crystallographically unique molecules of $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}$ in the asymmetric unit. Each molecule is labeled with the same atom numbering scheme, but has a different suffix (a-h). One molecule (f) was disordered over two positions with a 60:40 ratio; its counterpart is labeled with the same atom numbering scheme using a z-suffix. Shown below is a drawing of molecule (c) as a representative example.
The chirality of the compound was established by anomalous dispersion techniques using copper radiation with the use of the Flack parameter and Bayesian statistics of Bijvoet differences. Chiral carbons are labeled in the molecule below; $\mathrm{C} 9=S, \mathrm{C} 11=R$.

Experimental Section:

A yellow block crystal with dimensions $0.239 \times 0.156 \times 0.132 \mathrm{~mm}$ was mounted on a Nylon loop using very small amount of paratone oil.

Data were collected using a Bruker CCD (charge coupled device) based diffractometer equipped with an Oxford Cryostream low-temperature apparatus operating at 173 K . Data were measured using omega and phi scans of 1.0° per frame for 10 s . The total number of images was based on results from the program COSMO^{1} where redundancy was expected to be 4.0 and completeness of 100% out to $0.83 \AA$. Cell parameters were retrieved using APEX II software ${ }^{2}$ and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software ${ }^{3}$ which corrects for Lp. Scaling and absorption corrections were applied using SADABS ${ }^{4}$ multiscan technique, supplied by George Sheldrick. The structures are solved by the direct method using the SHELXS-97 program and refined by least squares method on F^{2}, SHELXL- 97^{5}, which are incorporated in OLEX2. ${ }^{6}$

The structure was solved in the space group $\mathrm{P} 2_{1}(\# 4)$. All non-hydrogen atoms are refined anisotropically. Hydrogens were calculated by geometrical methods and refined as a riding model. The Flack ${ }^{7}$ parameter is used to determine chirality of the crystal studied, the value should be near zero, a value of one is the other enantiomer and a value of 0.5 is racemic. The Flack parameter was refined to $-0.017(9)$, confirming the absolute stereochemistry. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the program within Platon ${ }^{8}$ also report that we have the correct enantiomer based on this comparison. ${ }^{9}$ The crystal used for the diffraction study showed no decomposition during data collection. All drawings are done at 50\% ellipsoids.

Acknowledgement. The CCD based x-ray diffractometer at Michigan State
University were upgraded and/or replaced by departmental funds.

References

1. COSMO V1.61, Software for the CCD Detector Systems for Determining Data Collection Parameters. Bruker Analytical X-ray Systems, Madison, WI (2009).
2. APEX2 V2010.11-3. Software for the CCD Detector System; Bruker Analytical X-ray Systems, Madison, WI (2010).
3. SAINT V 7.68A Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Madison, WI (2010).
4. SADABS V2.008/2 Program for absorption corrections using Bruker-AXS CCD based on the method of Robert Blessing; Blessing, R.H. Acta Cryst. A51, 1995, 33-38.
5. Sheldrick, G.M. "A short history of SHELX". Acta Cryst. A64, 2008, 112-122.
6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341.
7. Flack, H. D. Acta Cryst. A39, 1983, 876-881.
8. Spek, A.L. (2003), J.Appl.Cryst. 36, 7-13.

9 Hooft, R.W.W.; Straver, L.H. \& A. L. Spek, A.L.. J. Appl. Cryst. 41, 2008, 96103
${ }^{\text {a }}$ Obtained with graphite monochromated $\mathrm{Mo} \mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation.
${ }^{\mathrm{b}} R 1=\sum| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}} /\left|\mathrm{F}_{\mathrm{o}}\right| \quad{ }^{\mathrm{c}} w R_{2}=\left\{\mid\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} \cdot\left\{\sum\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}\right.\right.\right.\right.$.

The following are 50% thermal ellipsoidal drawings of one molecule (c) in the asymmetric cell with various amount of labeling.

This is a drawing of the packing along the b-axis; hydrogen atoms have been omitted for clarity.

Table 1 Crystal data and structure refinement for JW315a.

Identification code	JW315a
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}$
Formula weight	257.75
Temperature/K	173.0
Crystal system	monoclinic
Space group	P21
a / \AA	12.4101(3)
b/Å	18.9939(3)
c/Å	22.7815(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	99.0520(10)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	5303.09(18)
Z	16
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.291
μ / mm^{-1}	2.372
$\mathrm{F}(000)$	2176.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.239 \times 0.156 \times 0.132$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ} 3.928$ to 144.904	
Index ranges	$-15 \leq \mathrm{h} \leq 15,-23 \leq \mathrm{k} \leq 23,-28 \leq 1 \leq 28$
Reflections collected	66305
Independent reflections	\left.$20467{\left[\mathrm{R}_{\text {int }}\right.}=0.0891, \mathrm{R}_{\text {sigma }}=0.0731\right]$
Data/restraints/parameters	20467/522/1477
Goodness-of-fit on F^{2}	1.009
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0522, \mathrm{wR}_{2}=0.1151$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0758, \mathrm{wR}_{2}=0.1280$
Largest diff. peak/hole / e $\AA^{-3} 0.49 /-0.54$	
Flack parameter	0.017(9)

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for JW315a. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	U(eq)
C11A	$3006.9(13)$	$6780.1(8)$	$2095.4(7)$	$49.6(4)$
N1A	$-1227(3)$	$5354(2)$	$1701(2)$	$36.9(10)$
C1A	$1708(5)$	$6368(3)$	$1963(2)$	$36.0(12)$
C2A	$812(5)$	$6774(3)$	$1713(2)$	$36.7(12)$

C3A	-212(5)	6477(3)	1609(2)	36.0(12)
C4A	-316(4)	5770(3)	1756(2)	30.3(11)
C5A	588(4)	5359(3)	2012(2)	27.5(10)
C6A	1625(4)	5675(3)	2116(2)	32.6(11)
C7A	167(4)	4664(3)	2104(2)	32.8(11)
C8A	-930(4)	4695(3)	1914(2)	32.3(11)
C9A	-1679(5)	4083(3)	1951(3)	46.9(14)
C10A	-976(6)	3413(4)	1821(3)	63(2)
C11A	-146(5)	3419(3)	2391(3)	47.0(14)
C12A	736(5)	4001(3)	2366(3)	41.9(13)
C13A	-839(6)	3597(4)	2847(3)	66.6(19)
C14A	-1686(6)	3943(4)	2607(3)	67(2)
C15A	1348(7)	4161(4)	2995(3)	68(2)
C16A	1558(6)	3739(3)	1985(4)	61.0(19)
Cl1B	6660.4(14)	7221.4(8)	1166.4(7)	53.5(4)
N1B	6521(4)	4347(2)	264(2)	37.8(10)
C1B	6680(5)	6365(3)	889(2)	37.2(12)
C2B	7239(4)	6235(3)	415(2)	38.7(13)
C3B	7250(4)	5565(3)	183(2)	37.8(12)
C4B	6676(4)	5040(3)	423(2)	33.0(11)
C5B	6096(4)	5165(3)	902(2)	28.8(10)
C6B	6122(4)	5849(3)	1139(2)	32.7(11)
C7B	5582(4)	4513(3)	1017(2)	30.5(10)
C8B	5860(4)	4042(3)	625(2)	32.7(11)
C9B	5443(5)	3293(3)	588(3)	42.9(13)
C10B	5386(5)	3093(3)	1235(3)	43.0(13)
C11B	4421(4)	3560(3)	1346(3)	40.4(13)
C12B	4795(4)	4346(3)	1447(2)	36.6(12)
C13B	3671(5)	3464(3)	757(3)	46.5(14)
C14B	4234(5)	3305(3)	330(3)	47.4(14)
C15B	3812(5)	4848(3)	1334(3)	48.5(15)
C16B	5354(6)	4429(4)	2096(3)	54.0(16)
Cl1C	4016.6(14)	3823.9(9)	8376.9(8)	55.4(4)
N1C	8621(4)	4598(3)	8996(2)	42.1(11)
C1C	5417(5)	4010(3)	8569(3)	41.8(13)
C2C	6110(6)	3497(3)	8841(3)	48.7(15)
C3C	7203(6)	3636(3)	9002(3)	47.3(15)
C4C	7589(5)	4309(3)	8885(2)	36.7(12)
C5C	6883(4)	4826(3)	8590(2)	31.0(11)
C6C	5772(4)	4668(3)	8429(2)	32.3(11)
C7C	7539(4)	5439(3)	8525(2)	29.1(10)
C8C	8581(4)	5273(3)	8774(2)	36.5(12)

C9C	$9506(5)$	$5790(4)$	$8815(3)$	$48.8(15)$
C10C	$9284(5)$	$6197(4)$	$8222(3)$	$51.0(16)$
C11C	$8288(5)$	$6623(3)$	$8320(3)$	$41.1(12)$
C12C	$7237(4)$	$6142(3)$	$8229(2)$	$33.8(11)$
C13C	$8615(5)$	$6835(3)$	$8961(3)$	$47.2(14)$
C14C	$9298(5)$	$6370(3)$	$9242(3)$	$51.5(15)$
C15C	$6335(4)$	$6503(3)$	$8512(3)$	$41.6(13)$
C16C	$6831(5)$	$6042(3)$	$7572(3)$	$46.4(14)$
C11D	$6895(2)$	$450.6(9)$	$6189.5(11)$	$82.8(7)$
N1D	$6318(4)$	$3322(3)$	$5309(2)$	$40.8(11)$
C1D	$6716(5)$	$1308(3)$	$5902(3)$	$43.8(14)$
C2D	$7296(5)$	$1484(4)$	$5449(3)$	$48.1(15)$
C3D	$7199(5)$	$2152(4)$	$5218(2)$	$44.1(14)$
C4D	$6539(4)$	$2628(3)$	$5455(2)$	$36.2(12)$
C5D	$5941(4)$	$2448(3)$	$5915(2)$	$31.7(11)$
C6D	$6049(5)$	$1760(3)$	$6147(2)$	$39.1(12)$
C7D	$5330(4)$	$3061(3)$	$6029(2)$	$31.9(11)$
C8D	$5582(4)$	$3572(3)$	$5654(2)$	$37.1(12)$
C9D	$5155(5)$	$4311(3)$	$5660(3)$	$47.4(14)$
C10D	$3967(5)$	$4229(4)$	$5774(3)$	$53.2(16)$
C11D	$4184(5)$	$3967(3)$	$6423(3)$	$46.0(14)$
C12D	$4509(4)$	$3175(3)$	$6454(3)$	$37.7(12)$
C13D	$5137(5)$	$4429(3)$	$6675(3)$	$48.6(14)$
C14D	$5678(5)$	$4633(3)$	$6253(3)$	$48.7(15)$
C15D	$4994(5)$	$2967(3)$	$7094(3)$	$47.5(14)$
C16D	$3495(5)$	$2721(3)$	$6252(3)$	$46.5(15)$
C11E	$9334.9(17)$	$9852.4(8)$	$5388.4(8)$	$59.8(4)$
N1E	$8997(4)$	$6959(2)$	$4509(2)$	$36.8(10)$
C1E	$9243(5)$	$8986(3)$	$5105(3)$	$41.5(13)$
C2E	$9844(5)$	$8828(3)$	$4650(3)$	$45.6(14)$
C3E	$9799(5)$	$8154(3)$	$4421(3)$	$40.6(13)$
C4E	$9173(4)$	$7656(3)$	$4655(2)$	$31.7(11)$
C5E	$8556(4)$	$7813(3)$	$5116(2)$	$30.5(11)$
C6E	$8613(4)$	$8506(3)$	$5343(2)$	$33.7(11)$
C7E	$8002(4)$	$7183(3)$	$5232(2)$	$29.6(10)$
C8E	$8283(4)$	$6681(3)$	$4853(2)$	$34.6(11)$
C9E	$7855(5)$	$5942(3)$	$4831(3)$	$46.9(14)$
C10E	$7746(5)$	$5767(3)$	$5476(3)$	$49.4(15)$
C11E	$6794(5)$	$6259(3)$	$5562(3)$	$45.3(14)$
C12E	$7194(4)$	$7039(3)$	$5651(3)$	$39.2(13)$
C13E	$6058(5)$	$6152(3)$	$4972(3)$	$50.6(15)$
C14E	$6647(5)$	$5979(3)$	$4561(3)$	$51.1(15)$

C15E	$6210(5)$	$7544(3)$	$5512(3)$	$48.8(15)$
C16E	$7728(5)$	$7147(4)$	$6303(3)$	$53.7(16)$
C11F	$5156(3)$	$9335.4(17)$	$6338.3(13)$	$70.9(9)$
N1F	$1135(11)$	$7702(7)$	$5878(9)$	$40(3)$
C1F	$3937(10)$	$8869(6)$	$6224(6)$	$40(2)$
C2F	$3038(11)$	$9222(6)$	$5892(6)$	$49(3)$
C3F	$2043(10)$	$8872(5)$	$5764(5)$	$44(2)$
C4F	$1993(11)$	$8175(5)$	$5951(6)$	$31(3)$
C5F	$2890(12)$	$7837(9)$	$6292(14)$	$32(3)$
C6F	$3882(8)$	$8199(5)$	$6422(5)$	$33(2)$
C7F	$2523(13)$	$7148(7)$	$6441(10)$	$28(4)$
C8F	$1482(13)$	$7074(8)$	$6143(11)$	$33(3)$
C9F	$823(11)$	$6434(7)$	$6158(7)$	$37(3)$
C10F	$1643(14)$	$5820(9)$	$6120(8)$	$48(4)$
C11F	$2351(13)$	$5894(8)$	$6736(8)$	$46(3)$
C12F	$3141(13)$	$6536(8)$	$6759(9)$	$40(4)$
C13F	$1466(16)$	$6017(13)$	$7103(8)$	$46(4)$
C14F	$611(16)$	$6326(9)$	$6793(8)$	$42(4)$
C15F	$3560(20)$	$6730(15)$	$7419(8)$	$67(7)$
C16F	$4123(18)$	$6338(11)$	$6446(12)$	$55(5)$
Cl1Z	$5933(4)$	$8893(3)$	$6606(2)$	$69.1(14)$
N1Z	$1442(14)$	$7916(9)$	$5918(11)$	$36(4)$
C1Z	$4560(12)$	$8643(8)$	$6401(7)$	$45(3)$
C2Z	$3807(17)$	$9122(9)$	$6083(10)$	$48(4)$
C3Z	$2733(16)$	$8935(8)$	$5909(8)$	$42(4)$
C4Z	$2441(15)$	$8245(9)$	$6047(11)$	$36(4)$
C5Z	$3192(16)$	$7782(12)$	$6372(19)$	$29(4)$
C6Z	$4272(13)$	$7982(8)$	$6547(9)$	$41(4)$
C7Z	$2625(18)$	$7123(11)$	$6388(18)$	$33(6)$
C8Z	$1564(18)$	$7245(11)$	$6158(19)$	$33(5)$
C9Z	$720(19)$	$6693(11)$	$6139(12)$	$50(6)$
C10Z	$1310(20)$	$5996(12)$	$6052(11)$	$52(6)$
C11Z	$2052(19)$	$5930(14)$	$6657(13)$	$57(6)$
C12Z	$3039(19)$	$6441(12)$	$6691(12)$	$37(5)$
C13Z	$1270(30)$	$6160(20)$	$7059(14)$	$62(8)$
C14Z	$520(30)$	$6573(14)$	$6776(15)$	$54(7)$
C15Z	$3550(20)$	$6590(20)$	$7343(12)$	$52(7)$
C16Z	$3940(30)$	$6137(16)$	$6362(18)$	$53(7)$
C11G	$3039.4(14)$	$1003.8(9)$	$7182.2(8)$	$61.1(4)$
N1G	$-1298(3)$	$2261(2)$	$6715.6(19)$	$33.9(10)$
C1G	$1712(5)$	$1354(3)$	$7035(3)$	$42.4(14)$
C2G	$885(5)$	$923(3)$	$6759(3)$	$44.8(14)$

C3G	$-170(5)$	$1188(3)$	$6634(2)$	$40.6(13)$
C4G	$-353(4)$	$1881(3)$	$6787(2)$	$33.4(12)$
C5G	$495(4)$	$2324(3)$	$7072(2)$	$29.2(10)$
C6G	$1560(5)$	$2043(3)$	$7199(2)$	$35.8(12)$
C7G	$2(4)$	$2983(3)$	$7166(2)$	$28.8(10)$
C8G	$-1082(4)$	$2918(3)$	$6949(2)$	$30.5(11)$
C9G	$-1893(4)$	$3507(3)$	$6938(2)$	$36.8(12)$
C10G	$-1518(5)$	$3900(3)$	$7528(3)$	$41.8(13)$
C11G	$-449(5)$	$4228(3)$	$7395(2)$	$36.7(12)$
C12G	$477(4)$	$3666(3)$	$7444(2)$	$31.5(11)$
C13G	$-806(4)$	$4463(3)$	$6754(3)$	$38.0(12)$
C14G	$-1617(4)$	$4055(3)$	$6497(2)$	$36.4(11)$
C15G	$1415(4)$	$3929(3)$	$7135(2)$	$38.2(12)$
C16G	$926(5)$	$3545(3)$	$8109(2)$	$45.1(13)$
C11H	$644.6(13)$	$2852.4(7)$	$9559.9(6)$	$45.4(3)$
N1H	$1106(4)$	$5702(2)$	$10517.4(19)$	$33.8(10)$
C1H	$743(4)$	$3712(3)$	$9848(2)$	$31.4(11)$
C2H	$86(5)$	$3883(3)$	$10263(2)$	$39.3(13)$
C3H	$143(5)$	$4551(3)$	$10515(2)$	$38.4(13)$
C4H	$876(4)$	$5024(3)$	$10333(2)$	$31.3(11)$
C5H	$1540(4)$	$4860(3)$	$9899(2)$	$27.9(10)$
C6H	$1474(4)$	$4181(3)$	$9654(2)$	$29.8(10)$
C7H	$2180(4)$	$5479(3)$	$9836(2)$	$28.2(10)$
C8H	$1891(4)$	$5964(3)$	$1024(2)$	$32.4(11)$
C9H	$2393(5)$	$6686(3)$	$10296(3)$	$36.9(12)$
C10H	$3596(5)$	$6580(3)$	$10223(3)$	$42.9(13)$
C11H	$3439(4)$	$6410(3)$	$9552(3)$	$36.4(12)$
C12H	$3037(4)$	$5629(3)$	$9437(2)$	$30.8(11)$
C13H	$2555(5)$	$6937(3)$	$9324(3)$	$43.1(13)$
C14H	$1975(5)$	$7100(3)$	$9732(3)$	$45.0(14)$
C15H	$2562(4)$	$5532(3)$	$8778(2)$	$37.6(12)$
C16H	$4023(4)$	$5134(3)$	$9599(2)$	$37.4(12)$

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for JW315a. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a^{*} b^{*} U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
C11A	$55.0(8)$	$39.7(7)$	$54.4(9)$	$-4.5(6)$	$9.6(7)$	$-21.8(6)$
N1A	$32(2)$	$47(3)$	$32(2)$	$0(2)$	$4.5(18)$	$2(2)$
C1A	$46(3)$	$34(3)$	$30(3)$	$-10(2)$	$11(2)$	$-7(2)$
C2A	$66(4)$	$20(2)$	$26(3)$	$-3(2)$	$13(2)$	$0(2)$
C3A	$46(3)$	$34(3)$	$30(3)$	$-1(2)$	$10(2)$	$12(2)$
C4A	$37(3)$	$35(3)$	$19(2)$	$-2(2)$	$8(2)$	$5(2)$

C5A	$31(2)$	$30(3)$	$23(2)$	$-3.5(19)$	$8.8(19)$	$0.1(19)$
C6A	$40(3)$	$30(3)$	$29(3)$	$-3(2)$	$8(2)$	$1(2)$
C7A	$43(3)$	$30(3)$	$28(3)$	$0(2)$	$10(2)$	$-6(2)$
C8A	$42(3)$	$35(3)$	$21(2)$	$1(2)$	$11(2)$	$-4(2)$
C9A	$45(3)$	$56(4)$	$41(3)$	$2(3)$	$10(3)$	$-14(3)$
C10A	$75(5)$	$51(4)$	$65(4)$	$-5(3)$	$23(4)$	$-35(4)$
C11A	$62(4)$	$35(3)$	$47(3)$	$8(3)$	$14(3)$	$-7(3)$
C12A	$49(3)$	$30(3)$	$45(3)$	$9(2)$	$4(3)$	$-5(2)$
C13A	$75(5)$	$73(5)$	$55(4)$	$24(4)$	$23(4)$	$-13(4)$
C14A	$58(4)$	$90(6)$	$56(4)$	$22(4)$	$18(3)$	$-23(4)$
C15A	$82(5)$	$46(4)$	$66(5)$	$12(3)$	$-24(4)$	$-1(3)$
C16A	$57(4)$	$33(3)$	$99(6)$	$9(3)$	$29(4)$	$6(3)$
C11B	$70.3(10)$	$29.7(7)$	$57.5(9)$	$-2.9(6)$	$0.4(7)$	$-8.5(6)$
N1B	$40(2)$	$36(2)$	$41(3)$	$-3(2)$	$17(2)$	$2.9(19)$
C1B	$45(3)$	$32(3)$	$33(3)$	$1(2)$	$-2(2)$	$-4(2)$
C2B	$37(3)$	$41(3)$	$38(3)$	$10(2)$	$3(2)$	$-9(2)$
C3B	$36(3)$	$45(3)$	$34(3)$	$5(2)$	$12(2)$	$-8(2)$
C4B	$34(3)$	$38(3)$	$28(3)$	$0(2)$	$5(2)$	$1(2)$
C5B	$27(2)$	$33(3)$	$26(2)$	$3(2)$	$2.9(19)$	$0.0(19)$
C6B	$32(2)$	$34(3)$	$32(3)$	$-3(2)$	$4(2)$	$-1(2)$
C7B	$28(2)$	$33(3)$	$30(3)$	$1(2)$	$4.7(19)$	$-2(2)$
C8B	$31(2)$	$30(3)$	$38(3)$	$-3(2)$	$6(2)$	$1(2)$
C9B	$50(3)$	$28(3)$	$51(3)$	$-5(2)$	$9(3)$	$5(2)$
C10B	$39(3)$	$33(3)$	$58(4)$	$10(3)$	$8(3)$	$-1(2)$
C11B	$37(3)$	$36(3)$	$49(3)$	$9(2)$	$11(2)$	$-6(2)$
C12B	$34(3)$	$40(3)$	$37(3)$	$0(2)$	$11(2)$	$-5(2)$
C13B	$38(3)$	$35(3)$	$64(4)$	$8(3)$	$3(3)$	$-9(2)$
C14B	$53(3)$	$32(3)$	$54(4)$	$-5(2)$	$1(3)$	$-7(2)$
C15B	$46(3)$	$39(3)$	$68(4)$	$1(3)$	$32(3)$	$0(3)$
C16B	$64(4)$	$69(4)$	$32(3)$	$-2(3)$	$17(3)$	$-14(3)$
C11C	$58.3(9)$	$49.5(9)$	$62.4(10)$	$-19.5(8)$	$22.0(8)$	$-20.7(7)$
N1C	$47(3)$	$42(3)$	$39(3)$	$11(2)$	$12(2)$	$19(2)$
C1C	$52(3)$	$40(3)$	$37(3)$	$-9(2)$	$19(3)$	$-9(3)$
C2C	$78(4)$	$31(3)$	$42(3)$	$-5(2)$	$25(3)$	$-6(3)$
C3C	$77(4)$	$31(3)$	$37(3)$	$7(2)$	$20(3)$	$13(3)$
C4C	$50(3)$	$35(3)$	$29(3)$	$3(2)$	$16(2)$	$8(2)$
C5C	$44(3)$	$27(2)$	$25(2)$	$0(2)$	$14(2)$	$6(2)$
C6C	$43(3)$	$30(3)$	$26(2)$	$-7(2)$	$12(2)$	$1(2)$
C7C	$33(2)$	$29(2)$	$27(2)$	$3(2)$	$12(2)$	$3(2)$
C8C	$36(3)$	$41(3)$	$35(3)$	$3(2)$	$13(2)$	$8(2)$
C9C	$30(3)$	$62(4)$	$56(4)$	$14(3)$	$11(2)$	$8(2)$
C10C	$44(3)$	$55(4)$	$59(4)$	$11(3)$	$22(3)$	$-5(3)$
C		3				

C11C	$41(3)$	$35(3)$	$48(3)$	$8(2)$	$10(2)$	$-5(2)$
C12C	$39(3)$	$25(2)$	$38(3)$	$4(2)$	$7(2)$	$2(2)$
C13C	$46(3)$	$41(3)$	$54(4)$	$-4(3)$	$7(3)$	$-17(3)$
C14C	$40(3)$	$61(4)$	$52(4)$	$2(3)$	$1(3)$	$-16(3)$
C15C	$37(3)$	$35(3)$	$51(3)$	$-1(2)$	$4(2)$	$7(2)$
C16C	$58(4)$	$42(3)$	$37(3)$	$10(3)$	$2(3)$	$-5(3)$
C11D	$125.0(18)$	$33.8(9)$	$97.8(16)$	$8.2(9)$	$43.2(14)$	$12.2(10)$
N1D	$41(2)$	$50(3)$	$34(2)$	$10(2)$	$15(2)$	$3(2)$
C1D	$51(3)$	$32(3)$	$47(3)$	$-1(3)$	$4(3)$	$1(3)$
C2D	$56(4)$	$50(4)$	$39(3)$	$-8(3)$	$7(3)$	$14(3)$
C3D	$48(3)$	$59(4)$	$27(3)$	$2(3)$	$11(2)$	$8(3)$
C4D	$38(3)$	$40(3)$	$31(3)$	$0(2)$	$8(2)$	$3(2)$
C5D	$29(2)$	$38(3)$	$29(3)$	$-4(2)$	$6(2)$	$-2(2)$
C6D	$45(3)$	$39(3)$	$33(3)$	$-6(2)$	$6(2)$	$-6(2)$
C7D	$32(2)$	$34(3)$	$30(3)$	$-1(2)$	$6(2)$	$-4(2)$
C8D	$33(3)$	$42(3)$	$36(3)$	$-3(2)$	$4(2)$	$2(2)$
C9D	$48(3)$	$41(3)$	$55(4)$	$8(3)$	$10(3)$	$6(3)$
C10D	$43(3)$	$48(4)$	$67(4)$	$2(3)$	$4(3)$	$12(3)$
C11D	$37(3)$	$47(3)$	$57(4)$	$-11(3)$	$16(3)$	$-1(2)$
C12D	$37(3)$	$41(3)$	$38(3)$	$-9(2)$	$14(2)$	$-2(2)$
C13D	$51(3)$	$35(3)$	$62(4)$	$-16(3)$	$17(3)$	$1(2)$
C14D	$46(3)$	$33(3)$	$69(4)$	$-4(3)$	$15(3)$	$3(2)$
C15D	$46(3)$	$59(4)$	$41(3)$	$-12(3)$	$16(2)$	$-3(3)$
C16D	$41(3)$	$54(4)$	$47(3)$	$-12(3)$	$17(3)$	$-9(3)$
C11E	$90.9(12)$	$31.5(7)$	$63.9(10)$	$-7.1(7)$	$33.5(9)$	$-3.4(8)$
N1E	$43(2)$	$35(2)$	$35(2)$	$-4.7(19)$	$12(2)$	$3.0(19)$
C1E	$57(3)$	$32(3)$	$38(3)$	$-1(2)$	$15(3)$	$-4(3)$
C2E	$61(4)$	$40(3)$	$40(3)$	$2(3)$	$23(3)$	$-8(3)$
C3E	$50(3)$	$42(3)$	$34(3)$	$-1(2)$	$22(3)$	$-5(3)$
C4E	$33(3)$	$33(3)$	$30(3)$	$-2(2)$	$8(2)$	$2(2)$
C5E	$33(2)$	$33(3)$	$25(2)$	$3(2)$	$3.8(19)$	$0(2)$
C6E	$40(3)$	$32(3)$	$31(3)$	$-2(2)$	$11(2)$	$5(2)$
C7E	$33(2)$	$30(3)$	$25(2)$	$3(2)$	$2.1(19)$	$2(2)$
C8E	$37(3)$	$34(3)$	$33(3)$	$5(2)$	$6(2)$	$0(2)$
C9E	$51(3)$	$34(3)$	$56(4)$	$1(3)$	$8(3)$	$-4(2)$
C10E	$48(3)$	$38(3)$	$61(4)$	$16(3)$	$4(3)$	$-2(3)$
C11E	$40(3)$	$45(3)$	$51(4)$	$20(3)$	$9(3)$	$-6(2)$
C12E	$38(3)$	$42(3)$	$39(3)$	$10(2)$	$13(2)$	$1(2)$
C13E	$44(3)$	$44(3)$	$62(4)$	$14(3)$	$1(3)$	$-10(3)$
C14E	$57(4)$	$37(3)$	$56(4)$	$5(3)$	$-2(3)$	$-12(3)$
C15E	$39(3)$	$55(4)$	$56(4)$	$12(3)$	$20(3)$	$3(3)$
C16E	$59(4)$	$70(4)$	$35(3)$	$10(3)$	$18(3)$	$-3(3)$

Cl1F	85(2)	71.3(19)	59.6(16)	-9.6(14)	21.3(15)	-50.0(17)
N1F	33(6)	48(7)	36(5)	2(6)	1(5)	-2(4)
C1F	59(6)	31(6)	33(7)	-3(5)	16(5)	-12(5)
C2F	75(7)	34(6)	40(6)	7(5)	11(6)	-8(5)
C3F	55(6)	39(5)	38(5)	4(4)	7(5)	10(5)
C4F	32(8)	34(5)	28(6)	1(5)	9(7)	-2(5)
C5F	33(7)	33(6)	29(8)	-1(5)	6(7)	-2(6)
C6F	34(5)	40(6)	25(5)	4(4)	4(4)	-11(4)
C7F	40(7)	30(6)	14(5)	0(5)	5(6)	-6(5)
C8F	39(6)	39(7)	21(6)	3(7)	3(4)	-3(5)
C9F	39(6)	38(7)	32(5)	-2(6)	-3(4)	-14(5)
C10F	64(9)	38(7)	45(7)	-4(6)	14(6)	-7(6)
C11F	59(8)	38(6)	41(7)	8(5)	7(5)	3(5)
C12F	45(7)	36(7)	38(9)	11(6)	5(5)	-2(5)
C13F	58(8)	39(9)	41(6)	15(5)	8(5)	-10(7)
C14F	39(7)	54(11)	33(6)	4(7)	7(5)	-19(7)
C15F	91(14)	72(11)	27(7)	15(7)	-24(7)	6(10)
C16F	60(9)	39(11)	69(11)	9(8)	16(8)	15(7)
C11Z	81(3)	67(3)	67(3)	-30(2)	36(2)	-49(3)
N1Z	28(10)	40(11)	39(9)	17(11)	9(10)	10(6)
C1Z	54(8)	39(8)	47(9)	-8(7)	20(7)	-6(7)
C2Z	86(9)	21(8)	40(10)	-2(7)	22(7)	-14(7)
C3Z	70(10)	26(8)	35(8)	5(8)	21(9)	9(8)
C4Z	34(10)	31(7)	42(11)	-4(6)	4(9)	-2(7)
C5Z	36(10)	28(7)	25(12)	-4(6)	12(10)	7(7)
C6Z	46(8)	31(8)	42(10)	1(7)	-1(8)	-7(6)
C7Z	24(7)	35(8)	45(14)	-4(8)	22(7)	11(5)
C8Z	40(9)	25(9)	37(11)	-1(9)	12(8)	0 (6)
C9Z	54(10)	53(13)	45(9)	-1(11)	13(7)	-18(9)
C10Z	67(15)	43(12)	49(10)	-4(10)	19(10)	-40(11)
C11Z	62(12)	52(11)	61(14)	17(10)	21(10)	-11(8)
C12Z	46(10)	35(9)	27(10)	0 (7)	-1(7)	9(8)
C13Z	82(17)	57(19)	55(12)	18(11)	32(13)	3(13)
C14Z	45(10)	54(17)	64(11)	3(11)	14(9)	-16(10)
C15Z	29(10)	80(18)	50(11)	5(10)	15(8)	$0(9)$
C16Z	55(13)	35(16)	73(14)	7(12)	18(12)	17(11)
C11G	65.2(10)	61(1)	57.4(9)	16.0(8)	10.5(8)	32.6(8)
N1G	35(2)	32(2)	36(2)	-3.2(19)	7.0(18)	-10.9(18)
C1G	50(3)	42(3)	37(3)	11(2)	11(3)	14(3)
C2G	72(4)	27(3)	39(3)	8(2)	22(3)	6(3)
C3G	67(4)	24(3)	33(3)	2(2)	16(3)	-4(2)
C4G	47(3)	30(3)	26(3)	4(2)	13(2)	-4(2)

C5G	$41(3)$	$27(2)$	$21(2)$	$4.5(19)$	$10.9(19)$	$0(2)$
C6G	$44(3)$	$37(3)$	$26(3)$	$7(2)$	$8(2)$	$3(2)$
C7G	$36(3)$	$29(3)$	$22(2)$	$3.9(19)$	$7.8(19)$	$-4(2)$
C8G	$35(3)$	$31(3)$	$26(2)$	$2(2)$	$9(2)$	$-5(2)$
C9G	$31(2)$	$42(3)$	$39(3)$	$-3(2)$	$11(2)$	$0(2)$
C10G	$42(3)$	$45(3)$	$41(3)$	$-11(3)$	$15(2)$	$0(2)$
C11G	$45(3)$	$32(3)$	$34(3)$	$-7(2)$	$13(2)$	$-5(2)$
C12G	$36(3)$	$34(3)$	$25(2)$	$1(2)$	$5.7(19)$	$-3(2)$
C13G	$40(3)$	$29(3)$	$44(3)$	$7(2)$	$6(2)$	$7(2)$
C14G	$36(3)$	$39(3)$	$35(3)$	$1(2)$	$5(2)$	$11(2)$
C15G	$34(3)$	$39(3)$	$40(3)$	$2(2)$	$2(2)$	$-7(2)$
C16G	$56(3)$	$42(3)$	$32(3)$	$-4(2)$	$-7(2)$	$-6(3)$
C11H	$73.0(9)$	$24.2(6)$	$39.0(7)$	$-4.9(5)$	$8.8(6)$	$-8.0(6)$
N1H	$46(2)$	$30(2)$	$29(2)$	$-8.8(18)$	$16.1(19)$	$-6.9(19)$
C1H	$49(3)$	$22(2)$	$23(2)$	$-3.9(19)$	$3(2)$	$0(2)$
C2H	$55(3)$	$35(3)$	$29(3)$	$3(2)$	$10(2)$	$-18(2)$
C3H	$54(3)$	$38(3)$	$27(3)$	$-5(2)$	$16(2)$	$-9(3)$
C4H	$40(3)$	$33(3)$	$22(2)$	$-3(2)$	$9(2)$	$-5(2)$
C5H	$31(2)$	$33(3)$	$20(2)$	$1(2)$	$5.1(19)$	$3(2)$
C6H	$35(2)$	$35(3)$	$19(2)$	$-2(2)$	$2.6(19)$	$1(2)$
C7H	$31(2)$	$29(2)$	$24(2)$	$2.2(19)$	$4.1(18)$	$-2.2(19)$
C8H	$39(3)$	$32(3)$	$27(2)$	$-3(2)$	$6(2)$	$-4(2)$
C9H	$47(3)$	$26(3)$	$39(3)$	$-6(2)$	$11(2)$	$-5(2)$
C10H	$48(3)$	$31(3)$	$47(3)$	$-1(2)$	$-2(3)$	$-12(2)$
C11H	$31(3)$	$38(3)$	$42(3)$	$7(2)$	$10(2)$	$-7(2)$
C12H	$29(2)$	$38(3)$	$27(2)$	$2(2)$	$7.5(19)$	$0(2)$
C13H	$43(3)$	$35(3)$	$50(3)$	$14(2)$	$3(3)$	$-8(2)$
C14H	$45(3)$	$25(3)$	$64(4)$	$7(2)$	$6(3)$	$-1(2)$
C15H	$39(3)$	$48(3)$	$27(3)$	$1(2)$	$10(2)$	$-5(2)$
C16H	$34(3)$	$41(3)$	$38(3)$	$-1(2)$	$8(2)$	$2(2)$

Table 4 Bond Lengths for JW315a.

Atom Atom Length/ \AA Atom Atom Length/ \AA

C11A C1A 1.774(5) C7E C12E 1.514(7)
N1A C4A 1.370(7) C8E C9E 1.499(8)
N1A C8A 1.372(7) C9E C10E 1.535(9)
C1A C2A 1.399(8) C9E C14E 1.530(9)
C1A C6A 1.370(7) C10E C11E 1.543(9)
C2A C3A 1.376(8) C11E C12E 1.566(8)
C3A C4A 1.395(7) C11E C13E 1.514(9)
C4A C5A 1.415(7) C12E C15E 1.547(8)
C5A C6A 1.406(7) C12E C16E 1.540(8)

	C7A 1.448(7)	C13E C14E 1.318(9)		
C7A	C8A 1.363(7)	Cl1F	C1	1.737(11)
C7A	C12A 1.518(7)	N1F	C4F	1.382(13)
C8A	C9A 1.498(7)	N1F	C8F	1.375(13)
C9A	C10A 1.598(9)	C1F	C2F	1.416 (16)
C9A	C14A 1.519(8)	C1F	C6F	1.355(13)
C10A	C11A 1.524(9)	C2	C3F	.391(15)
C11	12A 1.563(7)	C3	C4F	.396(12)
C11	13A 1.489(9)	C4F	C5F	$1.408(14)$
C12	C15A 1.544(8)	C5F	C6F	1.401(13)
C12	C16A 1.523(8)	C5F	C7F	1.443(12)
C13	C14A 1.286(10)	C 7 F	C8F	1.368(13)
Cl1B	C1B 1.747(6)	C7F	C12F	3)
N1B	C4B 1.371(7)	C8F	,	3)
N1B	C8B 1.376(7)	C9F		558(14)
C1B	C2B 1.396(8)	C9	C14	(13)
C1B	C6B 1.374(8)	C 1	1	14)
C2B	С3B 1.378(8)		12	561(14)
	C4B 1.388(7)		13	499(14)
C4B	C5B 1.418(7)		15	.555(15)
C5B	C6B 1.405(7)		16	.552(14)
C5B	C7B 1.437(7)		1	1.316(15)
7B	C8B 1.347(7)	Cl1	C1Z	1.759(14)
C7B	C12B 1.521(7)	N	C4Z	1.378(17)
C8B	C9B 1.512(7)	N1Z	C8Z	1.386(17)
C9B	C10B 1.536(8)	C1Z	C2Z	1.419(19)
C9B	C14B 1.523(8)	C1Z	C6Z	1.360(17)
C10	C11B 1.543(8)	C2Z	C3Z	1.38(2)
11	C12B 1.569(8)	C3Z	C4Z	1.408(17)
C11	C13B 1.520(9)	C4Z	C5Z	1.405(17)
C12	C15B 1.537(8)		C6Z	1.391(17)
C12	C16B 1.540(8)	C5Z	C7Z	1.439(17)
C13	C14B 1.319(9)	C7Z	C8Z	1.358(17)
Cl 1 C	C1C 1.760(6)	C7Z	C12	1.520(17)
N1C	C4C 1.379(8)	C8Z	C9Z	1.478(18)
N1C	C8C 1.377(7)	C9Z	C10	.539(19)
C1C	C2C 1.381(9)	C9Z	C14	1.525(19)
C1C	C6C 1.379(8)	C10	C11	1.54(2)
C2C	C3C 1.375(10)	C11	C12	1.555(18)
C3C	C4C 1.406(8)	C11	13z	.505(19)
C4C	C5C 1.415(7)	C12Z	C15Z	1.546(18)
C5C	C6C 1.402(8)	C12Z	C16Z	1.548(18)

C C8C 1.365(8)	Cl1G C1G 1.759(6)
C C12C 1.516(7)	N1G C4G
C C9C 1.503(8)	N1G C8G
C C10C 1.544(9)	C1G C2G
C14C 1.5	C1G C6G 1.382(8)
C11C 1.523(8)	C2G C3G 1.389(9)
1.579(7)	,
1.507(9)	C4G C5G
15C 1.537(7)	C5G C6G 1.412(8)
C16C 1.514(8)	C5G C7G 1.426(7)
$3 \mathrm{C} 14 \mathrm{C} 1.317(9)$	C7G C8G 1.364(7)
D C1D 1.757(6)	C7G C12G 1.521(7)
D C4D 1.376(7)	C8G C9G
D C8D 1.381(7)	C10日
D C2D 1.387(9)	C9G C14G 1.522(8)
D C6D 1.372(8)	C10GC11G 1.539(7)
2D C3D 1.372(9)	
D C4D 1.386(8)	
D C5D 1.419(7)	
D C6D 1.408(8)	7)
D C7D 1.435(7)	C13GC14G 1.331(8)
D C8D 1.359(8)	C11H C1H 1.757(5)
D C12D 1.528(7)	N1H C4H 1.371(7)
D C9D 1.501(8)	N1H C8H 1.360(7)
D C10D $1.545(8)$	C1H C2H 1.380(8)
D C14D 1.532(9)	C1H C6H 1.392(7)
CC11D 1.542(9)	C2H C3H 1.389(8)
1.558(8)	C3H C4H 1.386(7)
1.511(8)	C4H C5H 1.418(7)
D 1.539(8)	C5H C6H 1.402(7)
16D 1.534(8)	C5H С7H 1.439(7)
C14D 1.315(9)	C7H C8H 1.364(7)
C1E 1.765(6)	C7H C12H 1.530(6)
C4E 1.375(7)	C8H C9H 1.505(7)
C8E 1.377(7)	C9H C10H 1.541(8)
C2E 1.402(8)	C9H C14H 1.526(8)
C6E 1.368(8)	C10HC11H 1.545(8)
C3E 1.381(8)	C11HC12H 1.573(7)
C4E 1.384(8)	C11HC13H 1.515(8)
4E C5E 1.424(7)	C12HC15H 1.535(7)
C5E C6E 1.413(8)	C12HC16H 1.5

C5E C7E 1.426(7) C13HC14H 1.300(8)
C7E C8E 1.368(7)

Table 5 Bond Angles for JW315a.
Atom Atom Atom Angle $/{ }^{\circ}$ Atom Atom Atom Angle $/{ }^{\circ}$
C4A N1A C8A 108.8(4) C7E C8E N1E 110.1(5)
C2A C1A C11A 118.0(4) C7E C8E C9E 123.3(5)
C6A C1A Cl1A 118.9(4) C8E C9E C10E 104.8(5)
C6A C1A C2A 123.1(5) C8E C9E C14E 106.9(5)
C3A C2A C1A 119.8(5) C14E C9E C10E 99.6(5)
C2A C3A C4A 118.1(5) C9E C10E C11E 100.1(5)
N1A C4A C3A 129.8(5) C10E C11E C12E 110.8(5)
N1A C4A C5A 108.0(4) C13E C11E C10E 100.0(5)
C3A C4A C5A 122.2(5) C13E C11E C12E 112.1(5)
C4A C5A C7A 106.4(4) C7E C12E C11E 108.5(5)
C6A C5A C4A 118.7(5) C7E C12E C15E 109.7(4)
C6A C5A C7A 134.9(5) C7E C12E C16E 110.9(5)
C1A C6A C5A 118.1(5) C15E C12E C11E 109.6(5)
C5A C7A C12A 131.1(5) C16E C12E C11E 109.3(5)
C8A C7A C5A 106.2(4) C16E C12E C15E 108.8(5)
C8A C7A C12A 122.7(5) C14E C13E C11E 109.9(6)
N1A C8A C9A 126.3(5) C13E C14E C9E 110.0(6)
C7A C8A N1A 110.6(5) C8F N1F C4F 109.2(10)
C7A C8A C9A 123.1(5) C2F C1F Cl1F 115.7(9)
C8A C9A C10A 104.2(4) C6F C1F C11F 121.2(10)
C8A C9A C14A 106.9(5) C6F C1F C2F 123.1(10)
C14AC9A C10A97.5(5) C3F C2F C1F 119.0(10)
C11AC10AC9A 98.7(5) C2F C3F C4F 118.0(10)
C10AC11AC12A 110.9(5) N1F C4F C3F 130.5(12)
C13AC11AC10A 102.1(6) N1F C4F C5F 107.3(9)
C13AC11AC12A 110.5(5) C3F C4F C5F 122.1(11)
C7A C12AC11A 108.4(5) C4F C5F C7F 106.9(9)
C7A C12AC15A 109.4(5) C6F C5F C4F 119.0(10)
C7A C12AC16A111.1(5) C6F C5F C7F 134.1(11)
C15AC12AC11A 110.5(5) C1F C6F C5F 118.6(10)
C16AC12AC11A 109.0(5) C5F C7F C12F 130.8(11)
C16AC12AC15A 108.6(6) C8F C7F C5F 106.6(10)
C14AC13AC11A 110.1(6) C8F C7F C12F 121.8(11)
C13AC14AC9A 112.1(7) N1F C8F C9F 126.2(11)
C4B N1B C8B 108.5(4) C7F C8F N1F 109.5(10)
C2B C1B Cl1B 118.8(4) C7F C8F C9F 124.0(11)
C6B C1B C11B 118.6(4) C8F C9F C10F 104.3(11)


```
C6C C5C C7C 134.0(5) C7Z C12Z C16Z 108.3(19)
C1C C6C C5C 118.1(5) C15Z C12Z C11Z 111.3(17)
C5C C7C C12C 130.8(5) C15Z C12Z C16Z 108.5(18)
C8C C7C C5C 106.5(5) C16Z C12Z C11Z 111.3(17)
C8C C7C C12C 122.7(5) C14Z C13Z C11Z 110.5(17)
N1C C8C C9C 127.1(5) C13Z C14Z C9Z 110.6(17)
C7C C8C N1C 110.2(5) C4G N1G C8G 108.9(4)
C7C C8C C9C 122.6(5) C2G C1G Cl1G 117.9(5)
C8C C9C C10C 104.1(5) C6G C1G Cl1G 118.1(5)
C8C C9C C14C 108.0(4) C6G C1G C2G 124.0(5)
C14CC9C C10C 100.0(5) C1G C2G C3G 119.1(5)
C11CC10CC9C 100.0(5) C2G C3G C4G 118.5(6)
C10CC11CC12C 110.2(5) N1G C4G C3G 130.0(5)
C13CC11CC10C 100.6(5) N1G C4G C5G 107.6(5)
C13C C11C C12C 111.9(4) C3G C4G C5G 122.4(5)
C7C C12C C11C 108.1(4) C4G C5G C7G 106.5(4)
C7C C12CC15C 110.6(4) C6G C5G C4G 118.2(5)
C15C C12C C11C 109.1(4) C6G C5G C7G 135.3(5)
C16CC12CC7C 110.4(4) C1G C6G C5G 117.7(5)
C16C C12C C11C 110.0(4) C5G C7G C12G 131.7(5)
C16C C12C C15C 108.6(5) C8G C7G C5G 106.7(5)
C14C C13C C11C 110.3(6) C8G C7G C12G 121.6(5)
C13CC14CC9C 109.6(6) N1G C8G C9G 125.7(5)
C4D N1D C8D 108.4(5) C7G C8G N1G 110.2(5)
C2D C1D C11D 116.8(5) C7G C8G C9G 123.9(5)
C6D C1D Cl1D 118.4(5) C8G C9G C10G 103.6(5)
C6D C1D C2D 124.7(6) C8G C9G C14G 107.4(4)
C3D C2D C1D 119.0(6) C14GC9G C10G 100.2(5)
C2D C3D C4D 118.3(5) C11GC10GC9G 100.1(4)
N1D C4D C3D 129.6(5) C10GC11GC12G 110.9(5)
N1D C4D C5D 107.6(5) C13GC11GC10G 100.2(5)
C3D C4D C5D 122.7(5) C13GC11GC12G111.6(4)
C4D C5D C7D 106.8(5) C7G C12GC11G 108.7(4)
C6D C5D C4D 118.2(5) C7G C12GC15G111.0(4)
C6D C5D C7D 135.0(5) C7G C12GC16G 109.7(4)
C1D C6D C5D 117.0(5) C15GC12GC11G 110.4(4)
C5D C7D C12D 130.7(5) C15GC12GC16G 108.4(4)
C8D C7D C5D 106.6(4) C16GC12GC11G 108.6(4)
C8D C7D C12D 122.6(5) C14GC13GC11G 109.7(5)
N1D C8D C9D 126.2(5) C13GC14GC9G 109.9(5)
C7D C8D N1D 110.5(5) C8H N1H C4H 108.9(4)
C7D C8D C9D 123.1(5) C2H C1H Cl1H 117.5(4)
```

C8D C9D C10D 104.7(5) C2H C1H C6H 123.4(5)
C8D C9D C14D 106.3(5) C6H C1H Cl1H 119.1(4)
C14DC9D C10D 100.0(5) C1H C2H C3H 120.0(5)
C11DC10DC9D 99.6(5) C4H C3H C2H 117.4(5)
C10DC11DC12D 111.0(5) N1H C4H C3H 129.1(5)
C13DC11DC10D 100.7(5) N1H C4H C5H 107.8(4)
C13DC11DC12D 111.2(5) C3H C4H C5H 123.2(5)
C7D C12DC11D 107.6(5) C4H C5H C7H 106.3(4)
C7D C12DC15D 111.3(5) C6H C5H C4H 118.4(5)
C7D C12DC16D 109.1(4) C6H C5H C7H 135.3(4)
C15DC12DC11D 110.5(5) C1H C6H C5H 117.6(4)
C16DC12DC11D 109.6(5) C5H C7H C12H 131.1(4)
C16DC12DC15D 108.7(5) C8H C7H C5H 106.4(4)
C14DC13DC11D 110.6(6) C8H C7H C12H 122.5(5)
C13DC14DC9D 109.5(6) N1H C8H C7H 110.7(5)
C4E N1E C8E 108.8(4) N1H C8H C9H 126.6(5)
C2E C1E Cl1E 117.3(4) C7H C8H C9H 122.7(5)
C6E C1E Cl1E 119.0(4) C8H C9H C10H 105.0(4)
C6E C1E C2E 123.7(5) C8H C9H C14H 107.2(5)
C3E C2E C1E 118.9(5) C14HC9H C10H 100.6(4)
C2E C3E C4E 118.7(5) C9H C10HC11H99.3(4)
N1E C4E C3E 129.9(5) C10HC11HC12H 110.4(4)
N1E C4E C5E 107.3(5) C13HC11HC10H 100.0(5)
C3E C4E C5E 122.7(5) C13HC11HC12H111.9(4)
C4E C5E C7E 107.0(5) C7H C12HC11H 108.0(4)
C6E C5E C4E 117.6(5) C7H C12HC15H111.3(4)
C6E C5E C7E 135.4(5) C7H C12HC16H 110.1(4)
C1E C6E C5E 118.3(5) C15HC12HC11H 109.8(4)
C5E C7E C12E 130.9(5) C15HC12H C16H 109.2(4)
C8E C7E C5E 106.8(4) C16HC12HC11H 108.4(4)
C8E C7E C12E 122.2(5) C14HC13HC11H 111.4(5)
N1E C8E C9E 126.6(5) C13HC14HC9H 109.1(5)

Table 6 Torsion Angles for JW315a.

A	B	C	D	Angle $/^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
$\mathrm{Cl1}$	C1A	C2A	C3A	-179.3(4)	C7E	C5E	C6E	C1E	-179.0(6)
Cl1A	C1A	C6A	C5A	179.6(4)	C7E	C8E	C9E	C1	-34.8(7)
N1A	C4A	C5A	C6A	-179.7(4)	C7E	C8E	C9E	C1	70.4(7)
N1A	C4A	C5A	C7A	0.6(5)	C8E	N1E	C4E	C3E	-178.2(6)
N1A	C8A	C9A	C10A	145.1(5)	C8E	N1E	C4E	C5E	1.0(6)
N1A	C8A	C9A	C14A	-112.3(6)	C8E	C7E	C12E	11	0.1(7)
C1A	C2A	C3A	C4A	-0.5(8)	C8E	C7E	C12E	C15	-119.6(6)

$\left.\begin{array}{llllllll}\text { C2A } & \text { C1A } & \text { C6A } & \text { C5A } & 0.3(8) & \text { C8E } & \text { C7E } & \text { C12E C16E } 120.1(6) \\ \text { C2A } & \text { C3A } & \text { C4A } & \text { N1A } & 179.7(5) & \text { C8E } & \text { C9E } & \text { C10E C11E 69.0(6) } \\ \text { C2A } & \text { C3A } & \text { C4A } & \text { C5A } & 0.8(7) & \text { C8E } & \text { C9E } & \text { C14E C13E } \\ \text { C3A } & \text { C4A } & \text { C5A } & \text { C6A } & -0.5(7) & \text { C9E } & \text { C10E } & \text { C11E C12E } \\ \text { C76.4(6) }\end{array}\right)$

C14A C9A	C10A C11A	$-40.2(5)$	C6F	C5F	C7F	C12F	$-6(6)$
C11B C1B	C2B	C3B	$-178.9(4)$	C7F	C5F	C6F	C1F

C10B C11B C13B C14B	$-25.9(6)$	C4Z	C5Z	C7Z	C12Z	$-179(3)$	
C11B	C13B	C14B C9B	$-1.3(7)$	C5Z	C7Z	C8Z	N1Z
$8(5)$							
C12B C7B	C8B	N1B	$175.7(5)$	C5Z	C7Z	C8Z	C9Z

| C8C | C9C | C10C C11C | $70.7(6)$ | C2G | C3G | C4G | N1G |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$-179.9(5)$

C5E	C7E	C8E	N1E	$0.7(6)$	C11HC13HC14HC9H	$-0.8(6)$
C5E	C7E	C8E	C9E	$-179.2(5)$	C12HC7H C8H N1H	$179.2(4)$
C5E	C7E	C12E C11E	$176.3(5)$	C12HC7H C8H C9H	$-0.3(8)$	
C5E	C7E	C12E C15E $56.6(8)$	C12HC11HC13HC14H90.7(6)			
C5E	C7E	C12E C16E	$-63.6(7)$	C13HC11HC12HC7H $-68.6(6)$		
C6E	C1E	C2E	C3E	$0.5(10)$	C13HC11HC12HC15H52.8(6)	
C6E	C5E	C7E	C8E	$179.5(6)$	C13HC11HC12HC16H $172.1(5)$	
C6E	C5E	C7E	C12E $2.9(10)$	C14HC9H C10HC11H-41.3(5)		

Table 7 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for JW315a.

Atom			y		z		U(eq)
H1A	-1894	5487		1554		44	
H2A	910	7253		1614		44	
H3A	-830	6746		1442		43	
H6A	2250	5416		2288		39	
H9A	-2414	4122		1701		56	
H10A	-1417	2976		1780		75	
H10B	-626	3479		1463		75	
H11A	200	2946		2469		56	
H13A	-679	3474		3255		80	
H14A	-2250	4093		2816		81	
H15A	1926	4505		2970		102	
H15B	1670	3726		3176		102	
H15C	835	4353		3240		102	
H16A	1176	3615		1588		92	
H16B	1933	3322		2171		92	
H16C	2093	4109		1951		92	
H1B	6797	4133		-21		45	
H2B	7611	6606		252		46	
H3B	7642	5465		-134		45	
H6B	5761	5952		1467		39	
H9B	5886	2963		381		51	
H10C	6067	3217		1504		52	
H10D	5227	2587		1277		52	
H11B	4078	3380		1685		48	
H13B	2900	3512		703		56	
H14B	3934	3213		-73		57	
H15D	4055	5330		1432		73	
H15E	3271	4709		1582		73	
H15F	3483	4824		914		73	
H16D	5886	4050		2196		81	

H16E	4804	4406	2361	81
H16F	5728	4885	2145	81
H1C	9210	4385	9180	51
H2C	5830	3046	8917	58
H3C	7687	3285	9187	57
H6C	5279	5005	8230	39
H9C	10248	5574	8903	59
H10E	9904	6505	8167	61
H10F	9117	5876	7877	61
H11C	8188	7045	8054	49
H13C	8365	7245	9137	57
H14C	9613	6394	9650	62
H15G	5662	6225	8428	62
H15H	6203	6976	8344	62
H15I	6564	6537	8942	62
H16G	7417	5843	7381	70
H16H	6608	6498	7391	70
H16I	6206	5720	7520	70
H1D	6599	3565	5041	49
H2D	7753	1148	5302	58
H3D	7576	2285	4903	53
H6D	5675	1615	6460	47
H9D	5240	4597	5301	57
H10G	3570	4683	5737	64
H10H	3559	3877	5505	64
H11D	3540	4055	6627	55
H13D	5320	4554	7083	58
H14D	6297	4934	6308	58
H15J	5154	2461	7110	71
H15K	4469	3075	7360	71
H15L	5669	3232	7219	71
H16J	3228	2809	5830	70
H16K	2925	2841	6487	70
H16L	3686	2222	6309	70
H1E	9292	6728	4239	44
H2E	10274	9180	4501	55
H3E	10191	8034	4109	49
H6E	8223	8636	5654	40
H9E	8292	5596	4636	56
H10I	8419	5883	5754	59
H10J	7559	5266	5524	59
H11E	6430	6098	5900	54

H13E	5287	6203	4909	61
H14E	6363	5891	4155	61
H15M	6452	8029	5602	73
H15N	5654	7416	5754	73
H15O	5900	7507	5090	73
H16M	8253	6767	6421	81
H16N	7164	7140	6559	81
H16O	8107	7601	6342	81
H1F	473	7789	5691	48
H2F	3112	9690	5757	59
H3F	1417	9101	5555	53
H6F	4504	7980	6645	40
H9F	154	6417	5849	45
H10K	1270	5358	6072	58
H10L	2073	5892	5795	58
H11F	2758	5449	6855	55
H13F	1516	5887	7509	55
H14F	-33	6460	6942	50
H15P	4178	7055	7439	101
H15Q	3795	6301	7643	101
H15R	2971	6955	7591	101
H16P	3855	6180	6040	83
H16Q	4542	5959	6667	83
H16R	4593	6751	6434	83
H1Z	840	8098	5720	43
H2Z	4048	9578	5990	57
H3Z	2215	9255	5707	51
H6Z	4790	7669	6760	49
H9Z	45	6779	5845	60
H10M	789	5598	5981	62
H10N	1735	6027	5721	62
H11Z	2296	5433	6739	68
H13Z	1305	6022	7463	75
H14Z	-65	6771	6942	64
H15S	4170	6911	7351	78
H15T	3798	6148	7540	78
H15U	3001	6808	7552	78
H16S	3627	6044	5946	80
H16T	4216	5697	6553	80
H16U	4533	6478	6378	80
H1G	453	6656	41	
H2G	037		54	

H3G	-753	901	6448	49
H6G	2151	2319	7391	43
H9G	-2674	3354	6875	44
H10O	-2050	4264	7604	50
H10P	-1388	3572	7870	50
H11G	-227	4639	7660	44
H13G	-497	4843	6567	46
H14G	-1971	4099	6097	44
H15V	2029	3601	7214	57
H15W	1649	4396	7289	57
H15X	1166	3960	6706	57
H16V	330	3397	8317	68
H16W	1245	3983	8285	68
H16X	1486	3177	8147	68
H1H	795	5930	10783	41
H2H	-405	3545	10377	47
H3H	-303	4680	10800	46
H6H	1912	4045	9367	36
H9H	2291	6931	10672	44
H10Q	3936	6183	10467	52
H10R	4034	7012	10320	52
H11H	4121	6501	9382	44
H13H	2440	7125	8932	52
H14H	1385	7424	9686	54
H15Y	2356	5038	8704	56
H	3111	5665	8533	56
HA	1916	5831	8677	56
H16Y	4336	5200	10018	56
HB	4576	5243	9349	56
HC	3786	4644	9533	56

Table 8 Atomic Occupancy for JW315a.
Atom Occupancy Atom Occupancy Atom Occupancy

Cl1F	0.6		N1F	0.6		H1F	0.6
C1F	0.6		C2F	0.6		H2F	0.6
C3F	0.6		H3F	0.6		C4F	0.6
C5F	0.6		C6F	0.6		H6F	0.6
C7F	0.6		C8F	0.6		C9F	0.6
H9F	0.6		C10F	0.6		H10K	0.6
H10L	0.6		C11F 0.6		H11F 0.6		
C12F	0.6		C13F	0.6		H13F	0.6
C14F	0.6		H14F 0.6		C15F	0.6	

H15P 0.6	H15Q 0.6	H15R 0.6
C16F 0.6	H16P 0.6	H16Q 0.6
H16R 0.6	Cl1Z 0.4	N1Z 0.4
H1Z 0.4	C1Z 0.4	C2Z 0.4
H2Z 0.4	C3Z 0.4	H3Z 0.4
C4Z 0.4	C5Z 0.4	C6Z 0.4
H6Z 0.4	C7Z 0.4	C8Z 0.4
C9Z 0.4	H9Z 0.4	C10Z 0.4
H10M0.4	H10N 0.4	C11Z 0.4
H11Z 0.4	C12Z 0.4	C13Z 0.4
H13Z 0.4	C14Z 0.4	H14Z 0.4
C15Z 0.4	H15S 0.4	H15T 0.4
H15U 0.4	C16Z 0.4	H16S 0.4
H16T 0.4	H16U 0.4	

Experimental

Single crystals of $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}$ [JW315a] were used as received. A suitable crystal was selected and mounted on a nylon loop using a small amount of paratone oil on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 173.0 K during data collection. Using Olex2 [1], the structure was solved with the ShelXS [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimization.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
2. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
3. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal structure determination of [JW315a]

Crystal Data for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}(M=257.75 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1}$ (no. 4), $a=12.4101(3) \AA, b=18.9939(3) \AA, c=22.7815(4) \AA, \quad \beta=99.0520(10)^{\circ}, V=$ $5303.09(18) \AA^{3}, Z=16, T=173.0 \mathrm{~K}, \mu(\mathrm{CuK} \alpha)=2.372 \mathrm{~mm}^{-1}$, Dcalc $=1.291 \mathrm{~g} / \mathrm{cm}^{3}$, 66305 reflections measured ($3.928 \subseteq 2 \Theta \leq 144.904^{\circ}$), 20467 unique ($R_{\text {int }}=0.0891$, $\mathrm{R}_{\text {sigma }}=0.0731$) which were used in all calculations. The final R_{1} was $0.0522(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1280 (all data).

Refinement model description

Number of restraints - 522, number of constraints - unknown.
Details:

1. Fixed Uiso

At 1.2 times of:
All C(H) groups, All C(H,H) groups, All $\mathrm{N}(\mathrm{H})$ groups
At 1.5 times of:
All C(H,H,H) groups
2. Rigid bond restraints

C11F, N1F, C1F, C2F, C3F, C4F, C5F, C6F, C7F, C8F, C9F, C10F, C11F, C12F, C13F, C14F, C15F, C16F
with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01
C11Z, N1Z, C1Z, C2Z, C3Z, C4Z, C5Z, C6Z, C7Z, C8Z, C9Z, C10Z, C11Z, C12Z, C13Z, C14Z, C15Z, C16Z
with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01
3. Uiso/Uaniso restraints and constraints
$\mathrm{C} 11 \mathrm{~F} \approx \mathrm{~N} 1 \mathrm{~F} \approx \mathrm{C} 1 \mathrm{~F} \approx \mathrm{C} 2 \mathrm{~F} \approx \mathrm{C} 3 \mathrm{~F} \approx \mathrm{C} 4 \mathrm{~F} \approx \mathrm{C} 5 \mathrm{~F} \approx \mathrm{C} 6 \mathrm{~F}$
$\approx \mathrm{C} 7 \mathrm{~F} \approx \mathrm{C} 8 \mathrm{~F} \approx \mathrm{C} 9 \mathrm{~F} \approx \mathrm{C} 10 \mathrm{~F} \approx \mathrm{C} 11 \mathrm{~F} \approx \mathrm{C} 12 \mathrm{~F} \approx \mathrm{C} 13 \mathrm{~F} \approx$
$\mathrm{C} 14 \mathrm{~F} \approx \mathrm{C} 15 \mathrm{~F} \approx \mathrm{C} 16 \mathrm{~F}$: within 1.7 A with sigma of 0.04 and sigma for
terminal atoms of 0.08
$\mathrm{Cl1Z} \approx \mathrm{~N} 1 \mathrm{Z} \approx \mathrm{C} 1 \mathrm{Z} \approx \mathrm{C} 2 \mathrm{Z} \approx \mathrm{C} 3 \mathrm{Z} \approx \mathrm{C} 4 \mathrm{Z} \approx \mathrm{C} 5 \mathrm{Z} \approx \mathrm{C} 6 \mathrm{Z}$
$\approx \mathrm{C} 7 \mathrm{Z} \approx \mathrm{C} 8 \mathrm{Z} \approx \mathrm{C} 9 \mathrm{Z} \approx \mathrm{C} 10 \mathrm{Z} \approx \mathrm{C} 11 \mathrm{Z} \approx \mathrm{C} 12 \mathrm{Z} \approx \mathrm{C} 13 \mathrm{Z} \approx$
$\mathrm{C} 14 \mathrm{Z} \approx \mathrm{C} 15 \mathrm{Z} \approx \mathrm{C} 16 \mathrm{Z}$: within 1.7 A with sigma of 0.04 and sigma for
terminal atoms of 0.08
Uanis $(\mathrm{C} 2 \mathrm{Z}) \approx$ Ueq: with sigma of 0.01 and sigma for terminal atoms of 0.02
4. Same fragment restrains
\{C11A, N1A, C1A, C2A, C3A, C4A, C5A, C6A, C7A, C8A, C9A, C10A, C11A, C12A,
C13A, C14A, C15A, C16A\} sigma for 1-2: 0.02, 1-3: 0.04
as
\{C11F, N1F, C1F, C2F, C3F, C4F, C5F, C6F, C7F, C8F, C9F, C10F, C11F, C12F, C13F, C14F, C15F, C16F $\}$
$\{\mathrm{Cl11A}, \mathrm{~N} 1 \mathrm{~A}, \mathrm{C} 1 \mathrm{~A}, \mathrm{C} 2 \mathrm{~A}, \mathrm{C} 3 \mathrm{~A}, \mathrm{C} 4 \mathrm{~A}, \mathrm{C} 5 \mathrm{~A}, \mathrm{C} 6 \mathrm{~A}, \mathrm{C} 7 \mathrm{~A}, \mathrm{C} 8 \mathrm{~A}, \mathrm{C} 9 \mathrm{~A}, \mathrm{C} 10 \mathrm{~A}, \mathrm{C} 11 \mathrm{~A}, \mathrm{C} 12 \mathrm{~A}$,
C13A, C14A, C15A, C16A \} sigma for 1-2: 0.02, 1-3: 0.04
as
\{C11Z, N1Z, C1Z, C2Z, C3Z, C4Z, C5Z, C6Z, C7Z, C8Z, C9Z, C10Z, C11Z, C12Z, C13Z, C14Z, C15Z, C16Z\}

5. Others

Fixed Sof: $\operatorname{Cl1F}(0.6) \mathrm{N} 1 \mathrm{~F}(0.6) \mathrm{H} 1 \mathrm{~F}(0.6) \mathrm{C} 1 \mathrm{~F}(0.6) \mathrm{C} 2 \mathrm{~F}(0.6) \mathrm{H} 2 \mathrm{~F}(0.6) \mathrm{C} 3 \mathrm{~F}(0.6)$
$\mathrm{H} 3 \mathrm{~F}(0.6) \mathrm{C} 4 \mathrm{~F}(0.6) \mathrm{C} 5 \mathrm{~F}(0.6) \mathrm{C} 6 \mathrm{~F}(0.6) \mathrm{H} 6 \mathrm{~F}(0.6) \mathrm{C} 7 \mathrm{~F}(0.6) \mathrm{C} 8 \mathrm{~F}(0.6) \mathrm{C} 9 \mathrm{~F}(0.6)$
$\operatorname{H9F}(0.6) \mathrm{C} 10 \mathrm{~F}(0.6) \mathrm{H} 10 \mathrm{~K}(0.6) \mathrm{H} 10 \mathrm{~L}(0.6) \mathrm{C} 11 \mathrm{~F}(0.6) \mathrm{H} 11 \mathrm{~F}(0.6) \mathrm{C} 12 \mathrm{~F}(0.6) \mathrm{C} 13 \mathrm{~F}(0.6)$
H13F(0.6) C14F(0.6) H14F(0.6) C15F(0.6) H15P(0.6) H15Q(0.6) H15R(0.6)
C16F(0.6) H16P(0.6) H16Q(0.6) H16R(0.6) Cl1Z(0.4) N1Z(0.4) H1Z(0.4) C1Z(0.4)
C2Z(0.4) H2Z(0.4) C3Z(0.4) H3Z(0.4) C4Z(0.4) C5Z(0.4) C6Z(0.4) H6Z(0.4)
C7Z(0.4) C8Z(0.4) C9Z(0.4) H9Z(0.4) C10Z(0.4) H10M(0.4) H10N(0.4) C11Z(0.4)
H11Z(0.4) C12Z(0.4) C13Z(0.4) H13Z(0.4) C14Z(0.4) H14Z(0.4) C15Z(0.4)
H15S(0.4) H15T(0.4) H15U(0.4) C16Z(0.4) H16S(0.4) H16T(0.4) H16U(0.4)
6.a Ternary CH refined with riding coordinates:

C9A(H9A), C11A(H11A), C9B(H9B), C11B(H11B), C9C(H9C), C11C(H11C), C9D(H9D),
C11D(H11D), C9E(H9E), C11E(H11E), C9F(H9F), C11F(H11F), C9Z(H9Z), C11Z(H11Z),
C9G(H9G), C11G(H11G), C9H(H9H), C11H(H11H)
6.b Secondary CH2 refined with riding coordinates:

C10A(H10A,H10B), C10B(H10C,H10D), C10C(H10E,H10F), C10D(H10G,H10H), C10E(H10I,
H10J), C10F(H10K,H10L), C10Z(H10M,H10N), C10G(H10O,H10P),

C10H(H10Q,H10R)
6.c Aromatic/amide H refined with riding coordinates:

N1A(H1A), C2A(H2A), C3A(H3A), C6A(H6A), C13A(H13A), C14A(H14A), N1B(H1B),
C2B(H2B), C3B(H3B), C6B(H6B), C13B(H13B), C14B(H14B), N1C(H1C), C2C(H2C),
C3C(H3C), C6C(H6C), C13C(H13C), C14C(H14C), N1D(H1D), C2D(H2D), C3D(H3D), C6D(H6D), C13D(H13D), C14D(H14D), N1E(H1E), C2E(H2E), C3E(H3E), C6E(H6E),
C13E(H13E), C14E(H14E), N1F(H1F), C2F(H2F), C3F(H3F), C6F(H6F), C13F(H13F), C14F(H14F), N1Z(H1Z), C2Z(H2Z), C3Z(H3Z), C6Z(H6Z), C13Z(H13Z), C14Z(H14Z),
N1G(H1G), C2G(H2G), C3G(H3G), C6G(H6G), C13G(H13G), C14G(H14G), N1H(H1H), $\mathrm{C} 2 \mathrm{H}(\mathrm{H} 2 \mathrm{H}), \mathrm{C} 3 \mathrm{H}(\mathrm{H} 3 \mathrm{H}), \mathrm{C} 6 \mathrm{H}(\mathrm{H} 6 \mathrm{H}), \mathrm{C} 13 \mathrm{H}(\mathrm{H} 13 \mathrm{H}), \mathrm{C} 14 \mathrm{H}(\mathrm{H} 14 \mathrm{H})$
6.d Idealised Me refined as rotating group:

C15A(H15A,H15B,H15C), C16A(H16A,H16B,H16C), C15B(H15D,H15E,H15F), C16B(H16D,
H16E,H16F), C15C(H15G,H15H,H15I), C16C(H16G,H16H,H16I), C15D(H15J,H15K,H15L), C16D(H16J,H16K,H16L), C15E(H15M,H15N,H15O), C16E(H16M,H16N,H16O), C15F(H15P,
H15Q,H15R), C16F(H16P,H16Q,H16R), C15Z(H15S,H15T,H15U), C16Z(H16S,H16T,H16U), C15G(H15V,H15W,H15X), C16G(H16V,H16W,H16X), C15H(H15Y,H,HA), C16H(H16Y,HB,HC)
This report has been created with Olex2, compiled on 2015.01 .26 svn.r3151 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

[^0]: ${ }^{1}$ Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA. ${ }^{2}$ Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA. ${ }^{3}$ Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA. ${ }^{4}$ Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA. ${ }^{\dagger}$ Present address: Department of Biochemistry, UT Southwestern, Dallas TX 75390, USA. Correspondence and requests for materials should be addressed to J.W. (email: jimmy.wu@dartmouth.edu) or G.G.H. (email: holzg@upstate.edu)

