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ABSTRACT: Peptide digestion from proteases is a
significant limitation in peptide therapeutic development.
It has been hypothesized that the dietary pathway of
vitamin B12 (B12) may be exploited in this area, but an
open question is whether B12-peptide conjugates bound to
the B12 gastric uptake protein intrinsic factor (IF) can
provide any stability against proteases. Herein, we describe
a new conjugate of B12 with the incretin peptide exendin 4
that demonstrates picomolar agonism of the glugacon-like
peptide-1 receptor (GLP1-R). Stability studies reveal that
Ex-4 is digested by pancreatic proteases trypsin and
chymotrypsin and by the kidney endopeptidase meprin β.
Prebinding the B12 conjugate to IF, however, resulted in up
to a 4-fold greater activity of the B12-Ex-4 conjugate
relative to Ex-4, when the IF-B12-Ex-4 complex was
exposed to 22 μg/mL of trypsin, 2.3-fold greater activity
when exposed to 1.25 μg/mL of chymotrypsin, and there
was no decrease in function at up to 5 μg/mL of meprin β.

KEYWORDS: vitamin B12, exendin-4, intrinsic factor,
trypsin, AKAR3

■ INTRODUCTION
The human vitamin B12 (B12) dietary uptake pathway is a
complex process that facilitates access in humans to a vital
cofactor of methionine synthase and methyl malonyl CoA
mutase enzymes.1 This pathway involves three major binders,
two of which, intrinsic factor (IF) and haptocorrin (HC), being
critical for oral uptake (the third, transcobalamin II (TCII),
facilitates entry into cells upon enterocyte passage).2 HC
primarily protects B12 against acid digestion in the stomach and
is enzymatically digested upon entry of the HC-B12 complex
into the duodenum, whereupon the B12 is bound by IF. While
IF is produced in gastric parietal cells and can bind B12 in the
stomach, HC binding is preferred at the lower pH here and it is
only upon digestion of HC and a rise in pH in the intestine that
IF binding of B12 occurs naturally.

3,4 Concomitant with the rise
in pH is the release of pancreatic proteases, and it is critical to
note that IF, unlike HC, is resistant to pancreatic protease
digestion.5 IF is critical then for delivery of B12 through the
intestinal tract to the ileum where cubilin-amnionless based

receptor mediated enterocyte passage occurs.6 Employing this
pathway for oral peptide delivery, for example, requires
conjugation of the peptide to B12 in such a way that IF
recognition of B12 is not critically hindered and that B12
conjugated peptide can still exhibit the desired pharmacological
function. Such concerns are typically readily addressed,
however, and there are now several significant examples of
B12-peptide conjugates that meet the above criteria.

7−11 What is
not understood, but is no less important, is whether such
peptide function is maintained when the conjugate is bound to
IF and whether IF, so effective at protecting B12, can provide
any protection to a B12 conjugated peptide upon exposure to a
protease. To investigate these questions we decided to focus on
a highly potent peptide (Ex-4) that is the basis of a
pharmaceutical (exenatide) currently approved for treatment
of diabetes mellitus.12

Ex-4 was discovered in the venom of the Gila monster in
1992 by Eng et al. and is an incretin mimetic, sharing 53%
homology with glucagon-like peptide-1 (GLP-1). Like GLP-1,
Ex-4 stimulates the release of insulin through agonism of the
GLP-1 receptor (GLP-1R) (EC50 33 pM), effectively lowering
blood glucose levels. Unlike GLP-1, Ex-4 is resistant to the
enzyme dipeptidyl peptidase IV (DPP-IV), which rapidly
cleaves and inactivates GLP-1 in vivo.13,14 Since DPP-IV
cleaves any peptide with an alanine or proline at the second
position from the N-terminus, substituting a glycine for the
alanine in GLP-1 results in the resistance seen in Ex-4. This
resistance allows Ex-4 to have a half-life of 2.4 h compared to
<2 min as seen for GLP-1.15 Such resistance to DPP-IV does
not, however, translate to other proteases, and exenatide
therefore must be administered subcutaneously.
The hypothesis herein then is that this pancreatic

degradation and general protease limitation may be overcome,
at least to some degree above unmodified peptide, by
conjugating B12 to Ex-4 and subsequently adding IF, assuming
the necessary maintenance of B12 binding by IF and Ex-4
agonism are controlled. To test these hypotheses we

Received: May 19, 2015
Revised: July 6, 2015
Accepted: August 5, 2015
Published: August 11, 2015

Communication

pubs.acs.org/molecularpharmaceutics

© 2015 American Chemical Society 3502 DOI: 10.1021/acs.molpharmaceut.5b00390
Mol. Pharmaceutics 2015, 12, 3502−3506

D
ow

nl
oa

de
d 

by
 S

U
N

Y
 U

PS
T

A
T

E
 M

E
D

IC
A

L
 U

N
IV

 o
n 

Se
pt

em
be

r 
13

, 2
01

5 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 A

ug
us

t 1
1,

 2
01

5 
| d

oi
: 1

0.
10

21
/a

cs
.m

ol
ph

ar
m

ac
eu

t.5
b0

03
90

pubs.acs.org/molecularpharmaceutics
http://dx.doi.org/10.1021/acs.molpharmaceut.5b00390


synthesized a B12-Ex-4 conjugate focusing on the lysine 12
(K12) position of Ex-4 and the ribose 5′-hydroxyl group of the
B12 moiety as sites of conjugation since both sites on the
respective moieties had published precedent for allowable
modification.16−18 Binding to IF was confirmed by radioassay,
and agonism of the GLP-1 receptor was then established for an
azido modified K12-Ex-4 (1), B12-Ex-4 (4), and IF-B12-Ex-4
(IF-4). With such establishing parameters controlled for
stability against the abundant intestinal endopeptidases, trypsin,
chymotrypsin, and the kidney protease meprin β19 were
compared for 1, 4, and IF-4.

■ EXPERIMENTAL SECTION

(AzidoK12)-Ex-4 (1) was conjugated to B12 at the K12 position
using Huisgens/Sharpless click chemistry,20 using Ex-4
modified at the lysine 12 ε-amine with an azido group during
solid-phase synthesis. The 5′ hydroxyl group of B12 was also
modified prior to coupling, being selectively oxidized to a
carboxylic acid (2) using 2-iodoxybenzoic acid, as previously
described by us.21 Subsequent coupling of 1-amino-3-butyne to
2 with 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide
(EDCI) and 1-hydroxybenzo-triazole (HOBt) produced B12
with a terminal alkyne at the ribose 5′-position (3) (see Scheme
1). Compound 3 was purified using a Shimadzu Prominence
HPLC on an Eclipse XDB C18 5 μm 4.6 mm × 150 mm
column with a mobile phase of 0.1% TFA water and elution

with acetonitrile on a gradient starting at 15% acetonitrile
increasing to 35% over 20 min (NMR for 3 is provided as
Supplementary Figure S1).
Compounds 1 and 3 were coupled using copper(II) sulfate

and sodium L-ascorbate (see Scheme 1). The new B12-Ex-4
conjugate (4) was purified with a Shimadzu HPLC using an
Eclipse XDB C18 5 μm 4.6 mm × 150 mm column with a
mobile phase of 0.1% TFA water and elution with acetonitrile.
A gradient run from 20% acetonitrile to 42% acetonitrile during
the first 3 min and then 42 to 47.5% acetonitrile during the next
10 min was used to separate 4 from starting materials. The
product was confirmed by matrix-assisted laser desorption/
ionization time of flight mass spectrometer (MALDI-ToF MS)
(see Figure 1, inset). Compound 4 was purified to greater than
97% purity by HPLC (see Figure 1). The tendency of Ex-4 to
aggregate resulted in a small shoulder at 6.5 min.22

■ DISCUSSION

Initially, IF binding of 4 was confirmed by radiometric chase
assay using 57Co-labeled B12 and compared to free B12, as
cyanocobalamin (see Figure 2).23 Significant IF binding of 4
(6.8 nM) was maintained, albeit reduced from unmodified B12
(0.12 nM).
Once IF binding of 4 (IF-4) was confirmed, agonism of the

GLP-1R was assayed for 1, 4, and IF-4 using HEK-293 cells
stably transfected with the GLP-1R (HEK-GLP-1R).25 To this

Scheme 1. Synthesis of B12-Ex-4 Conjugate 4a

aReagents and conditions: (i) EDCI, HOBt, 1-amino-3-butyne, rt, 16 h; (ii) 1, CuSO4, sodium ascorbate, 1 h.

Figure 1. LC trace showing purified 4 as a monomer (∼7 min) and dimer (∼6.5 min) and MALDI-Tof MS (inset) of 4 showing m/z of 5658.153
Da, which corresponds to the +1 of 4.
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end, we employed a new assay that uses adenoviral transduction
to express the genetically encoded FRET reporter AKAR3 that
serves as a sensitive readout for cAMP production due to the
fact that AKAR3 undergoes a decrease of 485/535 nm emission
FRET ratio when it is phosphorylated by cAMP-dependent
protein kinase A (PKA) subsequent to GLP-1R activation.26−28

This is the first instance to our knowledge of a FRET assay for
GLP-1R using viral AKAR3 and offers a ready route to sensitive
high-throughput screening of the GLP-1R. An EC50 for 1, 4,
and IF-4 were measured at 26, 68, and 132 pM, respectively
(see Figure 3). It is worth noting that the azido modification to

the K12 position of Ex-4 showed no significant reduction in
potency compared to unmodified Ex-4 suggesting a useful
general route for selective conjugation to Ex-4 through click
chemistry approaches.20 Compounds 4 and IF-4 show that
further conjugation to the K12 position effects function but still
demonstrates low picomolar effective concentrations.
Compounds 1, 4, and IF-4 were analyzed for stability against

proteolysis by measuring remaining function at the receptor
compared to undigested controls. Compounds 1, 4, and IF-4
were tested for function at [100 nM], a concentration at which
each had comparable percent change in FRET ratio (see Table
1). Each protease was analyzed separately so that the protective

nature of B12 and IF could be analyzed for their effect versus the
specific protease. The pH sensitivity of the assay prevented the
use of actual intestinal fluids when testing the compounds.
Digestion was conducted in a standard extracellular solution

containing trypsin at 11, 22, or 50 μg/mL, chymotrypsin at
1.25, 3, or 6.25 μg/mL, or meprin β at 1 or 5 μg/mL (see
Figures 4 and S2).
At the lowest concentrations of trypsin (11 μg/mL) and

chymotrypsin (1.25 μg/mL) there is up to 50% greater function
for IF-4 relative to 4 alone with the highest concentration of
trypsin (50 μg/mL) and chymotrypsin (6.25 μg/mL) assayed
showing complete lack of function for all systems. The
digestion was monitored by measuring agonism of the drugs
at the GLP-1R, initially over the course of 3 h, although it was
quickly noted that there was no change after 1.5 h indicating
that the digestion had stopped by this time point (data not
shown). Subsequent triplicate runs were then performed on
digestions of 1.5 h.
Meprin β digestion revealed a 2-fold increase in function with

B12 conjugation and a 3-fold increase in function when
prebound to IF (see Figures 5 and S3). No function was
seen for 1 at concentrations greater than 3 μg/mL. The
protection provided from B12 conjugation and subsequent
binding to IF show that key residues are being protected.
Results of the AKAR3 assays show maintenance of function
where otherwise none was observed or improvement of
function when 4 is first bound to IF.

■ CONCLUSIONS
The conservation or improved relative function demonstrated
herein for Ex-4 when conjugated to B12, and more significantly
when bound by IF, is an important first-step in addressing the
use and putative role of IF in protecting an administered
peptide (orally or by injected means). Protection against
pancreatic protease-catalyzed hydrolytic digestion of 4 was
maximal at a trypsin concentration of 22 μg/mL and 3 μg/mL
of chymotrypsin when 4 was prebound to IF, providing a 4-fold
and 5-fold positive increase in function, respectively, as
measured by GLP-1R agonism (utilizing the AKAR3 screening
assay). The digestion with metalloendoprotease meprin β
showed the most significant protection when comparing 1 and
IF-4. No reduction in function was seen at the highest
concentration of meprin β tested (5 μg/mL), while 1 showed
no function at concentrations greater than 1 μg/mL of meprin
β. B12 provided some protection against trypsin relative to the
native peptide. The effect is seen at 11 μg/mL of trypsin with a
relative 4-fold increase and at 1.25 and 3 μg/mL of
chymotrypsin with a relative increase of 3- and 5-fold. The
fact that the IF bound form IF-4 still maintained significant
function at the GLP-1R is also highly significant since many
routes to protect against intestinal degradation involve
encapsulation, which prevents possible luminal function or
absorption when in place. The use of IF to improve the
protease stability of a peptide offers significant scope for
exploitation. Even a small improvement in oral function, for
example, may be sufficient to achieve the desired effect.
Combining this approach with a highly potent peptide with
known gut receptors that can produce a vagal afferent response
(such as, but not limited to, GLP-1/Ex-4 or PYY3-36), for
example, may allow for a positive clinical outcome to be
achieved orally, without need even for systemic delivery.
Finally, as demonstrated by the stability against meprin β, there
is no suggestion that this approach is limited to oral use against

Figure 2. IF binding to B12 (0.12 nM) and 4 (6.8 nM). IF used in
these assays was produced in the plant Arabidopsis in the apo-form and
of high purity.24

Figure 3. Dose−response analysis of 1, 4, and IF-4 yielded EC50 values
of 26, 68, and 132 pM, respectively, as determined by monitoring the
485/535 nm FRET emission ratio.

Table 1. Percent Change in FRET at 100 nM for 1, 4, and
IF-4

compd % change in FRET at 100 nM

1 −12 ± 0.01
4 −13 ± 0.02
IF-4 −12 ± 0.01
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gastric proteases, but could also be expanded into serum
(through subcutaneous or intravenous injection of IF bound
B12-peptide conjugates, for instance), facilitating greatly
improved pharmacokinetics (especially when combined with
prior results showing B12 conjugation already improved sc
absorption of a PYY3-36 conjugate8), making this a possible
platform technology for peptide drug development.
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